

Towards the Software Autogeneration

D. Radosevic, T. Orehovacki and I. Magdalenic
University of Zagreb, Faculty of Organization and Informatics, Varazdin, Croatia

{danijel.radosevic, tihomir.orehovacki, ivan.magdalenic}@foi.hr

Abstract - Program generators are usually aimed for the

generation of program source code. This paper introduces

the idea of software source code generation and its execution

on demand that we refer to as Autogeneration.

Autogeneration avoids the generation of program files by

using the possibility of scripting languages to evaluate

program code from variables. There are several features

that could be achieved by Autogeneration. Some of them are

program update during its execution, optimized code

without temporarily unnecessary instructions and

introspection of the generation process for development

purposes. An example of a web application for database

content management that is implemented as an

autogeneration process is presented and discussed.

I. INTRODUCTION

Program code is usually observed as a set of program
files. It could be written manually or generated by usage
of a software generator. Although usage of files is a usual
way of storing program code scripting languages like
JavaScript, Perl or Python have an alternate option, which
is to evaluate program code from variables. This is a
relatively scarcely researched possibility, which is mostly
used for limited purposes like testing program code or
generation of small program pieces.

In this paper we introduce Autogeneration, which we
refer to as the automatic generation of program code and
its execution on demand. In our approach, Autogeneration
avoids the generation of program files in favor of using
possibilities of scripting languages to evaluate program
code from variables.

It is worthwhile considering possible benefits of
Autogeneration. So far we have identified several
possibilities enabled by such an approach. The most
obvious one is the possibility to change a program
specification and, consequently, its execution ‘on the fly’,
i.e. during program execution. In addition, some program
instructions, e.g. changing the database structure, are
rarely used. In this case, according to our approach, the
imperative statement (e.g. alter table) should be
performed, and the program specification updated to the
obtained new state. The code is generated in accordance
with a service requested from the user, so there is no need
for the regeneration of the entire application. Furthermore,
there is a possibility of some introspection of the
generation process. The generator can easily find the
corresponding parts of the program specification,
configuration and used code templates for achieving a

particular user action. This could be used in the
development of autogenerated software.

There are also some prerequisites and limitations of
Autogeneration. Firstly, the autogenerated software has to
be organized as a set of clearly distinguished services that
are requested by users. This is easier to achieve in web
applications, where users demand services via HTML
links. Secondly, autogenerated code should be written in a
scripting language (preferably the same as the generator)
to work effectively. Finally, some security and
performance issues need to be observed.

An example of an autogenerated web application is
presented in this paper that is also available online for
testing. The generator used for Autogeneration is based on
our previously introduced SCT generator model [1].

The remainder of paper is organized as follows.
Background to the research is described in Section 2.
Basics of the SCT generation model are discussed in
Section 3. An introduction to the autogeneration process is
provided in Section 4. Section 5 illustrates an application
example. Concluding remarks are given in the last section.

II. BACKGROUND TO THE RESEARCH

In this section we will provide a brief overview of the
software development paradigms in order to create a
theoretical background of the software auto-generation
approach.

Software Product Line Engineering (SPLE) is a
methodology of software product lines development based
on the reuse of artifacts, that is, core assets. A Software
Product Line (SPL) or Product Family (PF) is a group of
software intensive systems sharing common set of features
that meet specific needs of particular stakeholders [11].
The aim of SPLE is to reduce development time, effort,
cost, and complexity, increase productivity and quality of
software, and achieve higher end-user satisfaction. Rather
than developing software from scratch, an existing SPL
can be reconfigured and reused across projects. SPLE
consists of two processes: domain engineering (in which
the core assets are designed), and application engineering
(in which core assets are reused during the development of
a target product).

 Feature Oriented Software Development (FOSD) is a
common technique for representing variabilities and
commonalities of a SPL. A feature is a property of a
system relevant to some stakeholder used to capture

variabilities or discriminate among products in the same
family [36]. Features are hierarchically organized in a
diagram with a concept as a tree root. A feature model is a
feature diagram that contains feature descriptions,
information about stakeholders, priorities, etc. Feature
modeling was proposed as a part of Feature-Oriented
Domain Analysis (FODA) method for performing a
domain analysis [7]. FODA provides a comprehensive
description of the domain features, but neglects design and
implementation phases. Therefore it has been extended to
the Feature-Oriented Reuse Method (FORM), thus
providing support to the object-oriented component
development and architecture design [8].

Model Driven Software Development (MDSD) is a
paradigm that captures essential features of a system
through appropriate models [12]. In MDSD, models
represent first class entities that are combined and
transformed as the system is created. A modeling notation
commonly referred to as Domain-Specific Language
(DSL) plays the central role in MDSD [16]. DSL
encompasses a meta-model that defines the abstract syntax
for building models, concrete syntax description,
mappings between abstract and concrete syntax, and
semantics description. Former research efforts on the
relationship between MDSD and SPL were mainly
focused on specifying PF members by using DSLs [18].
Although MDSD has a number of benefits, a gap between
specifications and their software implementations still
exists [15]. With an aim to overcome the problem of
having annotations scattered all over the model template,
the use of Object Constraint Language (OCL) [14]
notation was proposed [13].

Aspect Oriented Software Development (AOSD) aims
at improving the software development process by
providing modularization and composition techniques to
handle crosscutting concerns [37].In general, concern is
anything that is of interest to a certain stakeholder. A
concern that affects multiple classes or one that is
triggered in multiple situations is called a crosscutting
concern. Separate modules, known as aspects, encapsulate
crosscutting concerns and are subsequently composed
with the rest of the system using an aspect weaver.
Automatic composition of aspects with other software
artifacts is either static during compilation, or dynamic at
loading or runtime. There are two types of AOSD
approaches. In asymmetric approaches such as AspectJ [3]
there is a difference between the aspects and entities that
compose the base system. Accordingly, they provide
language extensions, thus declaring aspects as first class
entities. On the other hand, symmetric approaches such as
Hyper/J [4] assume that all concerns in a system are
created equal and consequently can serve as an aspect or
base in different compositions.

Frame Based Software Development (FBSD)
advocates creating generalized, adapted, and thus
configured components based on Frame Technology (FT).
The concept of a frame as a data-structure for representing
a stereotyped situations was introduced by Marvin Minsky
in 1975 [19]. FT is a language independent textual pre-
processor for creating systems that can be easily adapted
or modified to different reuse contexts [5]. The key
elements of FT are code templates organized into a

hierarchy of modules known as frames, and a specification
that contains particular features written by the developer.
In the SPLE context, such an infrastructure embodies
architectures from which SPLs are derived and evolved
[6].According to an independent audit [9], FT has reduced
large software project costs by over 84% and their times-
to-market by 70%,concurrently reaching the reuse levels
of up to 90%. The aforementioned productivity
improvements motivated Jarzabek and Zhang [10] to
implement XML-based Variant Configuration Language
(XVCL). It is a meta-programming technique based on
Basset’s frames [20] to manage variabilities in SPLs. To
facilitate effective reuse, XVCL enables the partitioning of
programs into generic and adaptable meta-components
called x-frames. An x-frame is an XML file that
represents domain knowledge in the form of SPL assets.
X-frames form a layered hierarchical structure called an x-
framework, enabling handling variants at all granularity
levels. A configuration of variants in SPL assets is
recorded in a specification x-frame (SPC). Starting from
the call of SPC, the XVCL Processor interprets an x-
framework, performs the composition and adaptation of
visited x-frames by executing XVCL commands (XML
tags), and generates specific SPL members that meet
specific requirements. Owing to its status as a public
domain meta-language for enhancing reusability, the
principles of XVCL have been thoroughly tested in
practice [21][22][23].

Generative Software Development (GSD) is a widely
accepted software development approach focused on the
automatic generation of PF members [24]. The key
concept of GSD is a generative domain model which
refers to a mapping between problem space and solution
space [17]. Problem space is a set of features of a PF
member that are described by a DSL. On the other hand,
solution space refers to implementation-based abstractions
that are contained in the specification of a PF member.
The mapping between the spaces is performed by means
of a generator which calls a specification and results in a
corresponding implementation. Apart from XVCL [10],
techniques such as GenVoca [26], XFramer [25], and
openArchitectureWare [27] are used for generating
different types of artifacts. There are three types of
generators. The ones belonging to the first type are aimed
to generate code artifacts in programming languages such
as PHP [28], Java [29], or Python [2]. The generators in
the second type are focused on generating non-code
artifacts like text [34], graphical interface [33], or
students’ exercises [31]. The ones in the third type are
meant for building new scripting languages such as Open
PROMOL [30] or CodeWorker [32], whose purpose is
generator design.

Given that the afore-discussed paradigms are different
but rather complementary, a number of authors (e.g. [35],
[38]) have proposed the integration of two or more
approaches with the aim of attaining significant synergy
effects.

With a research objective of contributing to the body
of knowledge on SPLE we initiated a research into the
autogeneration of software. Our approach is mostly based
on Generative Programming and Frame Technology with

some adjustments like the usage of dynamic frames
generation [1].

III. BASICS OF THE SCT GENERATOR MODEL

The autogeneration system proposed in this paper is
based on our SCT generator model [1]. For the
autogeneration purpose, it is important that a generator in
the base of such a system fulfills some prerequisites.
Firstly, such a generator has to produce full executable
program code, not only a code skeleton. Otherwise, it
would not be possible to re-generate the code and execute
it on each user’s demand. Furthermore, the generator
should be fully configurable, i.e. the configuration has to
be separated from the generator code so it can be changed
‘on the fly’, just like in changing a program specification.
Finally, the autogeneration system should use the same
program specification and configuration as the ‘plain’
generator that generates program files. Code templates
could be adapted automatically (e.g. some internal links in
web applications have to be adapted for Autogeneration).

A. SCT Frame

The SCT generator model defines the source code
generator on the basis of three kinds of elements [1]:
Specification (S), Configuration (C) and Templates (T).
All the three model elements together make the SCT
frame (Fig. 1):

Figure 1. SCT frame [2]

Specification contains the features of a generated
application in form of attribute-value pairs. Template
contains the source code in a target programming
language together with connections (tags for insertion of
variable code parts). Configuration defines the connection
rules between Specification and Templates.

B. The Generation Tree

The generation process starts from the starting, top-
level SCT frame that is defined by the developer [1]. It
contains the whole Specification, the whole
Configuration, but only the base template from the set of
all Templates. Other SCT frames are produced
dynamically, during the generation process, forming the
generation tree (Fig. 2).

The depth of the generation tree depends on
Configuration. Configuration manages the generation
process by using a set of simple rules that connect the
attributes from Specification with connections (insertion
tags) in Templates [1].

C. Handler

The role of Handler [2] in the original SCT model is to
make the generator scalable in a way that it could produce
more pieces of program code (e.g. program files) from the

same set of Specification, Configuration and Templates.
For the purpose of Autogeneration, Handler has been
modified, as described in the next section.

#
c
o
n
n
N
#

Figure 2. The generation tree [2]

IV. THE AUTOGENERATION PROCESS

The autogeneration process is described in Fig. 3. A
user request is accepted by a request handler, whose task
is to decompose the request and to determine what action
should be taken. The request handler has to build an initial
SCT frame and call the source code generator to produce
the appropriate source code. It should be noted that in the
autogeneration process only the source code that is needed
to fulfill the user request is generated. This is the main
difference in comparison with the usual use of generative
programming, where the source code of a complete
application is generated. This is achieved by taking a
subset of Specification. Usually, the Specification contains
the information needed for generating the source code of
the complete application. By taking only a subset of the
Specification it is possible to generate the source code
needed for certain actions. Fig. 4 shows one possible
subset of Specification whose purpose is to generate html
templates and cgi scripts that deal with particular database
table management.

After the request handler has built the initial SCT
frame with the Specification subset, the source code
generator is called to generate the program source code.
The generated source code is stored in a variable, where
scripting languages like JavaScript, Perl or Python can
evaluate it. The Execution unit presented in Fig. 3 has the
task to execute the generated source code together with
arguments obtained from the request handler. Those
arguments are presented in Fig. 3 as Application context
and are usually obtained from user request. For example,
they can include information about the user who is
performing a certain action or information about a table
and a record in a database that is being updated. The result
of the Execution unit is sent to the user as a response to
their request. In the case of a web application, the
response is a web page that will be presented in the user’s
browser.

Figure 3. The autogeneration process

The autogeneration process uses two parameters (that,
in case of a web autogeneration system, could be sent
using the get method): the piece of code to be generated
(file) and the action that should be performed (action).
Specifying the file is inherited from the ‘plain’ generator,
to maintain compatibility. As shown in Fig. 4., depending
on the file, the appropriate part of Specification will be
used, while depending on the action, the appropriate
action will be performed (e.g. data display, data entry,
data correction etc).

 global action,connection,order,upload_id
 print "<body bgcolor=\"#FFFFFF\" style=\"font-

family: Verdana\">\n"
 print "<center>

"

 sql="delete from gpml_upload where
upload_id="+str(upload_id)

 try:
 cur.execute(sql)
 conn.commit()

 except:
 print "Error: can't delete record!
\n"

 sys.exit(0)
 print "

Record successfully deleted from
table gpml_upload !\n"

 print "</center>\n"
 print "<SCRIPT LANGUAGE=\"JavaScript\">"

 print "window.parent.document.location=\
"upload.cgi?action=display\""

 print "</SCRIPT>"

field_upload:upload_file
+field_display:Filename
field_memo:upload_description

+field_display:Description

field_number:category_id

+field_display:Category ID
field_text:category_name
+field_display:Category name

Figure 4. Specification subset

V. AN EXAMPLE

The example of the autogeneration system is a web
application for database administration via web forms1.

1
An example is available at:

http://gpml.foi.hr/SCT_Autogenerator_Example/

Basic model elements of the SCT generator model
(Specification, Configuration and Templates) are available
in the same way as with a conventional generator that
produces program files (Fig. 5).

Figure 5. Basic model element in html form

Specification still contains some filenames, e.g.:

out1:output/index.html

The file ‘output/index.html’ is not generated, but the
filename is used internally to denote the generated piece
of code. Also, filenames are retained to keep the same
specification that is used in a conventional generator.

The generator is integrated with application execution,
so that starting the generator also starts the autogenerated
application (Fig. 6).

Figure 6. The autogenerated application

The example shows basic features of an autogeneration
system: changing the application ‘on the fly’, imperative
statements and code introspection.

A. Changing the application ‘on the fly’

The code to be generated is defined by a parameter file
(submitted via the get method). Any change in
Specification is updated each time the user requests the
re-generation and execution of the appropriatepiece of
code. Configuration and Templates can also be modified
‘on the fly’, enabling even a substantial change in the
application structure.

B. Imperative statements

Imperative statements in Specification are used to
perform rarely used instructions, usually connected with
some program dependencies, like databases. A typical
example of usage of such statements is changing a
database table structure, along with the change in
program code. For example, the Specification statement:

ADD_field_int:new_column

will cause the generation of the appropriate ALTER
TABLE statement in the generated code. After the
instruction is executed, the specification will be updated
by removing the imperative statement (here: ADD):

field_int:new_column

So, the imperative statement is intended to be
performed once, establishing a new state.

C. Code introspection

Introspection in an autogeneration system enables
application developers to see exactly which part of
Specification, Configuration and Templates was used in
the generation of acurrently executing part of an
application. In the example application, introspection is
implemented in form of an introspection pane, as shown
in Fig. 7.

Figure 7. The introspection pane

The introspection starts from the generator'
‘knowledge’ of how something was generated, helping
developers to find possible errors or possibilities for
application improvement.

VI. CONCLUSION

The paper introduces the idea of software source code
generation and its execution on demand that we refer to as
Autogeneration. The presented example of a web
application that works as an autogeneration system shows
that such a concept is possible and could have some
advantages in comparison with the usual way of code
generation (into program files). Some of the possible
benefits of such an autogeneration system include
changing the application ‘on the fly’, imperative
statements and code introspection. All these three
concepts are included in the example application.

In addition to the benefits of using Autogeneration,
there are some limitations – and even disadvantages – of
such a concept. Firstly, the concept is closely connected to
scripting languages (we used Python) that contain the
possibility of code evaluation from variables.
Furthermore, the autogenerated application also needs to
be in a scripting language, preferably the same one as the
generator.

The performances of such systems could therefore be
slightly degraded in relation to applications
generated/written in a usual way.

In our future work, we plan to define a formal model
of Autogeneration and test the concept in the development
of different kinds of applications.

REFERENCES

[1] D. Radošević, and I. Magdalenić, “Source Code Generator Based

on Dynamic Frames”,Journal of Information and Organizational
Sciences, vol. 35, no. 2, pp. 73–91, 2011.

[2] D. Radošević, and I. Magdalenić, “Python Implementation of
Source Code Generator Based on Dynamic Frames”, In
Proceedings of the 34th MIPRO International Convention, N.
Bogunović and S. Ribarić, Eds. Opatija: MIPRO, 2011, pp. 369–
374.

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.
Griswold, “Getting started with AspectJ”, Communications of the
ACM, vol. 44, no. 10, pp. 59–65, 2001.

[4] A. Lai, G.C. Murphy, and R.J. Walker, “Separating concerns with
Hyper/J: An Experience Report”, In Workshop on Multi-
Dimensional Separation of Concerns in Software Engineering,

http://www.research.ibm.com/hyperspace/workshops/icse2000/Pa
pers/lai.pdf

[5] N. Loughran, A. Rashid, W. Zhang, and S. Jarzabek, “Supporting
Product Line Evolution with Framed Aspects”, InWorkshop on
Aspects, Components and Patterns for Infrastructure Software,
http://www.comp.lancs.ac.uk/computing/aop/papers/SPL_ACP4IS
2004.pdf

[6] P.G. Bassett, “The Case for Frame-Based Software Engineering”,
IEEE Software, vol. 24, no. 4, pp. 90-99, 2007.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-Oriented Domain Analysis (FODA) Feasibility
Study”, Technical Report, Software Engineering Institute,
Carnegie Mellon University, 1990.

[8] K. C. Kang, J. Lee, and P. Donohoe, “Feature-Oriented Product
Line Engineering”, IEEE Software, vol. 19, no. 4, pp. 58-65, 2002.

[9] I. Grossman and M. Mah, “Independent Research Study of
Software Reuse Using Frame Technology”, Technical Report,
QSM Associates, 1994.

[10] S. Jarzabek, and H. Zhang, “XML-based Method and Toolfor
Handling Variant Requirements in Domain Models”, In
Proceedings of the Fifth IEEE International Symposium on
Requirements Engineering. Toronto: IEEE Press, 2001. pp. 166-
173.

[11] P. Clements, and L. Northrop, “Software Product Lines: Practices
and Patterns”. Boston: Addison-Wesley, 2002.

[12] T. Stahl, and M. Völter, “Model-Driven Software
Development:Technology, Engineering, Management”. West
Sussex: Wiley & Sons, 2006.

[13] K. Czarnecki, C. H. P. Kim, and K. T. Kalleberg, “Feature models
are views on ontologies”, In Proceedings of the 10th International
Software Product Lines Conference. Baltimore: IEEE Press,
2006,pp. 41-51.

[14] J. B. Warmer, and A. G. Kleppe, “The Object Constraint
Language: Precise Modeling With UML”. Boston: Addison-
Wesley, 1998.

[15] V. V. G. Neto, and J. L. de Oliveira, “An early aspect for model-
driven transformers engineering”, In Proceedings of the 2011
International Workshop on Early Aspects. Porto de Galinhas:
ACM, 2011. pp. 7-11.

[16] M. Fowler, “Domain-Specific Languages”. Boston: Addison-
Wesley, 2010.

[17] K. Czarnecki, “Overview of generative software development”,
Lecture Notes in Computer Science, vol. 3566, pp. 326-341, 2005.

[18] J. Greenfield, and K. Short, “Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools”.
Indiana: Wiley Publishing, 2004.

[19] M. Minsky, “A framework for representing knowledge”, The
Psychology of Computer Vision, P. Winston, Ed., New York:
McGraw-Hill, 1975.

[20] P. G. Bassett, “Framing software reuse - lessons from real world”.
Prentice Hall, 1997.

[21] H. Zhang, andS. Jarzabek, “XVCL: a mechanism for handling
variants in software product lines”, Science of Computer
Programming, vol. 53, no. 3, pp. 381-407, 2004.

[22] L. Yuan, J. Song Dong, and J. Sun, “Modeling and Customization
of Fault Tolerant Architecture using Object-Z/XVCL”, In
Proceedings of the 13th Asia Pacific Software Engineering
Conference. Kanpur: IEEE Press, 2006. pp. 209-216.

[23] S. Guo, L. Tang, and W. Xu, “XVCL-An Annotative Approach to
Feature-Oriented Programming”, In Proceedings of the 2010

International Conference on Computational Intelligence and
Software Engineering. Wuhan: IEEE Press, 2010. pp. 1-5.

[24] K. Czarnecki and U. W. Eisenecker,“Generative Programming
Methods, Tools, and Applications”. Boston: Addison-Wesley,
2000.

[25] M. Emrich, and M. Schlee, “Codegenerierung mit XFramer und
Programmiertechniken für Frames”, Objektspektrum, no. 5, pp.
55-60, 2003.

[26] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M.
Sirkin, “The GenVoca model of software-system generators”,
IEEE Software, vol. 11, no. 5, pp. 89-94, 1994.

[27] A. Haase, M. Völter, S. Efftinge, and B. Kolb, “Introduction to
openArchitectureWare 4.1.2”, 2007.

http://www.voelter.de/data/workshops/oawSubmissionToolsWork
shop.pdf

[28] D. Radoševič, T. Orehovački, and M. Konecki, “PHP Scripts
Generator for Remote Database Administration based on C++
Generative Objects”. In Proceedings of the 30th MIPRO
International Convention on Intelligent Systems, Opatija: MIPRO,
2007. pp. 167–171.

[29] D. Radošević, M. Konecki, and T. Orehovački, “Java Applications
Development Based on Component and Metacomponent
Approach”, Journal of Information and Organizational Sciences,
vol. 32, no. 2, pp. 137–147, 2008.

[30] V. Štuikys, and R. Damaševičius, “Scripting Language Open
PROMOL and its Processor”, Informatica, vol. 11, no. 1, pp, 71-
86, 2000.

[31] D. Radošević, T. Orehovački, and Z. Stapić, “Automatic On-line
Generation of Student's Exercises in Teaching Programming”, In
Proceedings of the 21st Central European Conference on
Information and Intelligent Systems, Varaždin: FOI, 2010. pp. 87–
93.

[32] C. Lemaire, “CodeWorker Parsing tool and Code generator -
User’s guide & Reference manual, Release 4.5.4, 2010,
http://www.codeworker.org/CodeWorker.pdf

[33] M. Schlee, and J. Vanderdonckt, “Generative Programming of
Graphical User Interfaces”, In Proceedings of the Working
Conference on Advanced Visual Interfaces. Gallipoli: ACM,
2004. pp. 403-406.

[34] J. Műller, and U. W. Eisenecker, “The Applicability of Common
Generative Techniques for Textual Non-Code Artifact
Generation”, In Proceedings of the Workshop on Modularization,
Composition, and Generative Techniques for Product Line
Engineering, Department of Informatics and Mathematics,
University of Passau, 2008. http://www.infosun.fim.uni-
passau.de/spl/apel/McGPLE2008/papers/Paper8.pdf

[35] I. Groher, and M. Voelter, “Aspect-Oriented Model-Driven
Software Product Line Engineering”, Lecture Notes in Computer
Science, vol. 5560, pp. 111-152, 2009.

[36] A. Classen, P. Heymans, and P-Y. Schobbens, “What’s in a
Feature: A Requirements Engineering Perspective”, Lecture Notes
in Computer Science, vol. 4961, pp. 16-30, 2008.

[37] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-
M. Loingtier, and J. Irwin, “Aspect-oriented programming”,
Lecture Notes in Computer Science, vol. 1241, pp. 220-242, 1997.

[38] L. Fuentes, C. Nebrera, and P. Sánchez, “Feature-Oriented Model-
Driven Software Product Lines: The TENTE approach”, In
Proceedings of the Forum of the 21st International Conference on
Advanced Information Systems (CAiSE), E. Yu, J. Eder, and C.
Rolland, Eds. Amsterdam, 2009. pp. 67-72.

