

Building Process of SCT Generators

D. Radošević, I. Magdalenić, and T. Orehovački

University of Zagreb, Faculty of organization and informatics, Varaždin, Croatia

danijel.radosevic@foi.hr; ivan.magdalenic@foi.hr; tihomir.orehovacki@foi.hr

Abstract - This paper presents the building process of

generators based on the SCT dynamic frames model. The

SCT generator is defined by its Specification (S),

Configuration (C) and Templates (T). These elements are

represented graphically by Specification diagram and

Configuration diagram. The building process starts by

initial steps and continues by a spiral application

development, based on Boehm's spiral model of software

development. To evaluate the proposed building steps, an

example of building SCT generator was given. The example

uses the software tool developed with a purpose to

implement the building steps of SCT based generators.

I. INTRODUCTION

The paper introduces a method of building code

generators according to the SCT generator model [1]. The

method is supported by our generator development tool,

named as Generator builder.

Development tools for building of applications that are

based on the principles of generative programming is a real

need. A development tool makes it easy to build applications

and prevents the appearance of typical errors in the design as

described in [2] and in sintax [3]. Applications based on

generative programming are special in that they usually use

a domain-specific language for defining the characteristics

of the application. A usage of domain specific language

introduces a new level where errors can occur. To minimize

errors and to help generator developers we have already

created error messaging tool described in detail in [4]. Error

messaging tool serves to detect typical errors that occur in

phase of the source code generator creation. Defects in the

development process can be avoided by following good

practices and by using of an appropriate development tools.

There are several already tried and tested techniques of

generative design as it is shown in [5]. This paper presents a

new technique of generative design that is specially adapted

to SCT generator model [1]. In this paper are described some

typical steps in building process of generators based on the

SCT dynamic frames model. For that purpose we have

developed a graphic development tool which implements

this process. The process of building of the source code

generator is the main step in building of generative

applications. The inputs to this process are previously

created prototypes of applications on the one hand and the

collected knowledge about user requests and desired

application features on the other. The generator developer

creates Specification and the tool assists him in creation of

appropriate source code templates and Configuration rules.

The remainder of the paper is structured as follows.

Section 2 provides literature review of the most prominent

techniques aimed for generating of programming code.

Features of the SCT generator model are described in the

third section. Building steps of SCT generators are explained

in the fourth section. Discussion on design issues in defining

generator building steps is offered in the fifth section.

Section 6 gives conclusions.

II. BACKGROUND TO THE RESEARCH

Software product lines (SPL) emerge during

development of multiple versions of the same software
system for different types of users. The objective of the
SPL approach is to lower development expenses and
concurrently increase software quality and productivity.
Instead of developing each software system from the
scratch, SPL approach supports reuse of product line
assets such as the domain model, product line architecture,
and generic components [6]. Although SPL members have
many characteristics in common, they differ in certain
users’ requirements and implementation details called
variants. The set forth variability in the SPL domain could
result in a large number of possible variant combinations
thus making them difficult to handle. Variability
mechanisms that support automated composition and
adaptation of reusable SPL assets represent an effective
way of addressing the problem of managing variants. This
section offers a brief overview of automated code
generation techniques for handling variants in the SPL
approach.

GenVoca [7] is a domain independent software
development model aimed for generation of hierarchical
SPL families. Fundamental features of GenVoca are
realms composed of plug-compatible layers, type
equations, and symmetric layers [8]. Standardized
interfaces called virtual machines are a set of classes, their
objects, and methods used for the implementation of SPL
functionalities. Layer or component represents an
implementation of particular virtual machine. If a set of
layers implement the same virtual machine, then they
constitute a realm or library. Each layer exports the virtual
machine of the realm to which it belongs and imports
interface of the realm of which parameter it contains. A
particular layer is symmetric if it exports and imports the

same virtual machine. Layers encapsulate transformation
that maps operations and objects between export and
import virtual machines. A named composition of layers
used for modeling a particular software system is called a
type equation. Realms and their layer define a grammar
whose sentences are SPL members.

A modular framework which enables model-driven
development of SPLs is called openArchitecturWare
(oAW)[9]. The essential part of the oAW is a workflow
engine that enables the definition of transformation
workflows together with prebuilt workflow components
meant for instantiation of models, validating their
semantic correctness, their transformation into other
models, and eventually code generation [10][11].
Workflow components are XML files which specify steps
that need to be executed in a generator run. oAW has
built-in support for operating on UML, UML2,
EMF/Ecore, XML, Visio, and JavaBeans-based
metamodels [12]. For semantic validation of models based
on the set forth metamodels, oAW offers a declarative
constraints checking language called Check where tests
are specified as First-Order Logic formulas. After
checking model constraints, valid models are combined
into one model by employing model-to-model (M2M)
transformations implemented using a textual language
called Xtend. Result of the M2M transformation is used as
a starting point for code generation which is done using an
object-oriented template language called Xpand. More
recently, openArchitecturWare has moved to the Eclipse
Modeling Project [13].

XML-based Variant Configuration Language (XVCL)
[14] is a general purpose template language based on
Bassett’s frame technology [15]. XVCL works on the
principle of composing custom artifacts (e.g. code) from a
base of generic, adaptable, and reusable domain product
line assets called meta-components or x-frames. Meta-
components are XML files where variation points are
instrumented by XVCL commands thus facilitating
automatic customization and evolution. Normalized
layered hierarchy architecture of meta-components is
called an x-framework. The specification frame (SPC) is
the topmost x-frame which manages composition and
adaptation process of a product line member. Starting with
the SPC, the XVCL processor traverses an x-framework,
interprets XVCL commands embedded in visited x-
frames, and by conducting necessary adaptations
assembles components of a specific system.

With an aim to overcome the barriers of the SPL
approach adoption, Heradio et al. [16] have proposed the
exemplar driven development process (EDD). The
concept underlying EDD is analogy oriented development
based on the similarities among domain products. EDD
process starts with an implementation of domain exemplar
which represents an intersection of all the product
requirements within domain. Requirements which are out
of the intersection scope are formally defined during the
exemplar flexibilization phase. Exemplar flexibilization
results in domain specific language (DSL) compiler which

is used during application engineering phase for automatic
generation of software products.

Similarly as XVCL, our approach is frames based. The
essential difference is that SCT generator model is based
on dynamic frames [1] that are created during the
generation process while XVCL is based on static frames.
In addition, the generator building process proposed in
this paper starts from application prototype which is
analogous to a development process suggested by Heradio
et al. [16].

III. GENERATOR OVERVIEW

Generators are meant for generation of code artifacts
in diverse programming languages. Heretofore, they have
been used in the development of web applications
[17][18], web services [19][20], as well as for generation
of lab based assignments [21]. The SCT generator model
[1] defines the generator of source code from three core
elements: Specification (S), Configuration (C) and
Templates (T). Specification contains the features of the
generated application in form of attribute-value pairs.
Templates contain source code in a target programming
language together with connections (replacing marks for
insertion of variable code parts). Configuration defines the
connection rules between Specification and Templates.
All three model elements together constitute the SCT
frame.

A particular SCT frame produces source code that
could be either stored in a specific data file or included in
another SCT frame. The basic idea of the generation
process is shown in Figure 1. The initial SCT frame
contains the initial source code template that includes
connections. Source code template is file that contains
source code and connections. Connections used in code
templates define inclusion of content that can be from
another code template, or source, if code template is
omitted. Each connection has to be replaced with other
source code template or value from Specification during
the process of source code generation. The source code
generator creates a new SCT frame for each connection.
The source code of SCT frames located deeper in the
hierarchy is included as the integral part of its superior
SCT frame. The source code of the initial SCT frame is
stored in a data file.

Since an average application contains more data files,
the SCT model implies the existence of Handler. The
Handler is the part of the SCT source code generator
which aims to make the generator scalable in a way that it
can produce more pieces of program code (e.g. program
files) from the same set of Specification, Configuration
and Templates. The SCT dynamic frames model enables
the generation of various program units (e.g. files, classes,
functions etc.) from the same Specification. Moreover, it
enables the generation of different types of code e.g.
JavaScript, PHP, XML, Python, Java, etc.

Figure 1. The generation process

All three constitutive elements of SCT model are
presented in case study of application which aim is dealing
with dynamic list in C++. The same application is used in
next section for description of building steps of a generator.

Elements of Specification are attribute-value pairs as
shown in following example:

OUTPUT:out1

out1:output/Linked_list.cpp

field_int:student_id

field_char:surname_name

field_int:year_of_study

field_char:note

This Specification defines main features of application.

The application is going to be generated in program file

named Linked_list.cpp. Each dynamic list element consist of

four attributes and their data types: student_id with data type

integer, surname_name with data type char, year_of_study

with data type integer, and note with data type char.

Configuration consists from Configuration rules defined

by three elements: Connection, Source, and Code Template.

The following example of Configuration defines 5 rules,

where each rules is defined in one line.

(1) #1#,,main.template

(2) #fields_declarations#,field_*,field_*.template

(3) #data_entry#,field_*,data_entry.template

(4) #field#,field_*

(5) #print_data#,field_*,print_data.template

The first rule defines the initial source code template

main.template. The second rule defines replacement of

connection #fields_declarations# with template

field_*.template for each occurrence of attribute field_* in

Specification. For example, for attribute field_int is used

template field_int.template. The third rule defines

replacement of connection #data_entry# with template

data_entry.template for each occurrence of attribute field_*

in Specification. Similar functionality has the fifth rule. The

fourth rule defines replacement of connection #field# with

value from specification. For example, field_int is replaced

with student_id in first occurrence of this connection in

source code template.

Templates are program code fragments which contain

connections. Typical application is generated using several

templates. For example, a template data_entry.template

defines part of application that deals with input of user data.

cout << "#field#: ";

cin >> new_element->#field#;

The presented template has two connection #field#

which are replaced with values from Specification. This

template is used for each occurrence of attribute field_ in

Specification as defined by third rule in Configuration. The

final code of that part application looks as follows:

 cout << "student_id: ";

 cin >> new_element->student_id;

 cout << "surname_name: ";

 cin >> new_element->surname_name;

 cout << "year_of_study: ";

 cin >> new_element->year_of_study;

 cout << "note: ";

 cin >> new_element->note;

All templates of example application are available

online
1
.

IV. BUILDING STEPS OF A GENERATOR

The process of building new generators starts from

application prototype, similar to approach described in [16].
The prototype is being transformed/ decomposed into SCT
model elements through several steps described in this
section. The SCT generator uses these elements in automatic
assembling of different application variants, which is shown
on example of program in C++ that deals with simple linked
list. Program variations refer to different structure of linked
list element, as shown in Figure 2.

1
 SCT Generator Builder example

http://gpml.foi.hr/SCT_Generator_Builder/

HEAD (int: number) (int: number)
NULL

PROTOTYPE

DECOMPOSITION TO SCT

MODEL ELEMENTS

SPECIFI-
CATION

CONFIGU-
RATION

TEMPLATES

GENERATING OF APPLI-

CATION VARIANT

HEAD

(int: student_id)

(char: name)

(int: year)

(int: student_id)

(char: name)

(int: year) NULL

Figure 2. Transformation of prototype into application variant

Steps in a process of generator building, including

example:

0. Prerequisite. The prerequisite for building of SCT

generator is the application prototype in some textual form.

This includes different types of programming code,

regardless of programming language, mark-up code like

HTML and XML, documentation text etc. The prototype is

being relaxed through the next step in order to enable

generation of variants.

1. Choosing new main templates and output types.

Templates are program code fragments that contain

connections (tags for further inclusion of code). The main

templates are specified in the initial part of Configuration

and define the type of code to be generated [1], e.g.:

 #1#,,main.template

Each main template from Configuration is connected to

corresponding output type in Specification. Output types are

defined in the beginning of Specification, usually together

with the names of output files to be generated, e.g.:

OUTPUT:out1 - output type

out1:output/program.cpp - output file

2. Creating of Specification. Specification consists from

attributes and their values. There is also a hierarchy of

attributes that can by represent by a Specification diagram

[1] (Figure 3).

Developer should specify attributes and their initial values

for further linking to corresponding connections in

Templates.

Figure 3. Specification diagram

3. Identifying of variable program parts. Variable

program parts depend on Specification, so they should be

later replaced with connections. This step is a key for

separation of concerns [21], which is here, according to the

SCT generator model, separation of program artifacts

(Templates) from Specification and connection rules

(Configuration). For example, the specification of used data

structure contains a variable program part:

 struct TList{

 int number; // variable part

 TList *next;

 };

4. Relaxing of prototype. Program parts that are identified

as variable are being replaced by connections (in #-es). In

case of data structure declaration this could look as follows:

 struct TList{

 #fields_declarations# // variable part
 TList *next;

 };

5. Adding new rule to Configuration. Each connection

created in the previous step has to be added into

Configuration in form of a configuration rule. The

configuration rule specifies respectively all three elements

of the SCT model: connection, specification attribute and

used code template. In the example this could look as

follows:

 #fields_declarations#,field_*,field_*.template

Specification attribute field_* represents the number of

occurrences of all attributes having name starting with

field_. Template name specified as field_*.template

represents usage of filenames that correspond to attribute

names (e.g. usage of field_int designates the usage of

field_int.template). This relation can be represented by a

Configuration diagram [1] as shown in Figure 4.

Figure 4. Part of the Configuration diagram representing single

configuration rule

Usage of virtual template implies dynamic binding of

template file (during the process of generation), analogous

to appropriate concept of dynamic polymorphism in OOP.

6. Building of new code templates. The previous step

anticipates the usage of different code templates. In case of

virtual templates, there are possibly several real templates

that have to be built. For a case shown in Figure 4, the

templates are related to used data types, e.g.:

 int #field#; // Field_int.template

This example requires adding of appropriate rule to

Configuration (step 5):

 #field#,field_*

The third element, template, is here omitted, which specifies

direct replacement of connection by attribute value.

7. Generating, testing and adjusting in a generative
development process. The whole process of generators

development and applications building consists of the

repetition of operations described in the preceding steps.

This can be represented by a spiral model, similar to

Boehm's spiral model of software development [23], as

shown in Figure 5.

0. APPLICATION

PROTOTYPE

1. Main templates

and output types

2. Creation of

Specification

3. Identifying of

variable program

parts

4. Relaxing of

prototype
5. Adding new rule

to Configuration

6. Building of new

code templates

7. Generating,

testing and

adjusting

GENERATOR

+

APPLICATION

VARIANTS

Figure 5: Spiral generator/application development

The development process starts with an application

prototype and results by a generator that can be used for

automatic assembling of different application variants.

Modifications can start at each step of this process,

following by the remaining steps, where some step could be

omitted, except the step 7 (gives the final application).

V. DISCUSSION

The paper describes a method for building of code

generators, according to previously introduced SCT
generator model [1]. The proposed steps of generator
building are also supported by a software tool named as
Generator builder (Figure 6).

Figure 6. Generator builder

There were some design issues in defining of generator

building steps and also in defining of their order. While the

starting point (application prototype) is rather obvious, as

well as the step 1(choosing new main templates and output

types), there were some dilemmas about the step 2. The

development of a generator could start from prototype

decomposition, but this approach was proved to be

problematic. The problem arises from a fact that each

connection established in a prototype (in a form of replacing

marks in '#'-es) has corresponding line in Specification and

also corresponding line in Configuration. Some another

connection could be assigned to the same Specification and

Configuration lines, which could lead to their repetition. To

avoid repetition, it seems that it's better approach to make

the Specification first. In this case, each new connection has

to be assigned to some existing Specification line. To avoid

repetition in Configuration, it's enough just to check the

existence of the same rule.

Other design issues were mostly concerned to design of

a software tool that could be usable in building of

generators. The most important effort was to adapt the

user/developer interface to the need of SCT generator

model, especially in performing tasks that are not very

convenient for the standard programming editors. Some of

the examples are simultaneous visibility of different SCT

model elements, automatic updating of Specification and

Configuration, easy extracting of code templates and easy

building of template variants.

There also some remaining issues like generator

documenting in a form of SCT diagrams (Specification

diagram and Configuration diagram) [1] and building of

model elements repository, which could be some of the

goals of the future work.

VI. CONCLUSION

The paper defines the development process of a SCT

based code generator through seven steps. The steps are

repetitive, and the whole process can be represented as a

kind of spiral model of software development, similar to

[23]. The appropriate software tool aimed for building of

SCT based code generator, named as Generator builder,

was also developed. For the purpose of testing the method

and also the software tool, an example of generator

development was given. The example starts with the

prototype of a simple program in C++ that deals with linked

list. The prototype was decomposed to the SCT model

elements (Specification, Configuration and templates)

through proposed seven steps. By using of these elements,

an application variant was generated, compiled and tested.

There were some issues in design of generator building

steps and software tool. Most of these were related to the

order of development steps and to the design of software

tool user interface. Finally, although there is a still space for

improvements, the method and a software tool were found

to be usable. The issues for the future work include working

with the SCT diagrams and building of model elements

repository.

REFERENCES

[1] D. Radošević, and I. Magdalenić, “Source Code Generator Based on
Dynamic Frames”, Journal of Information and Organizational
Sciences, vol. 35, no. 1, pp. 73-91, July 2011.

[2] F. Heidenreich, J. Johannes, and M. Seifert, “Generating safe
template languages”, Proceedings of the 8th International ACM
SIGPLAN Conference on Generative Programming and Component
Engineering. Denver: ACM, 2009, pp. 99-108.

[3] J. Arnoldus, J. Bijpost, and M. Van Den Brand, “Repleo: A syntax-
safe template engine”, Proceedings of the 6th International
Conference on Generative Programming and Component
Engineering. Salzburg: ACM, 2007, pp. 25-32.

[4] D. Radošević, I. Magdalenić, and T. Orehovački, “Error Messaging in
Generative Programming”, Proceedings of the 22nd Central European
Conference on Information and Intelligent Systems", Varaždin: FOI,
2011, pp. 181-187.

[5] V. Singh, and N. Gu, “Towards an integrated generative design
framework”, Design Studies, vol. 33, no. 2, pp. 185–207, March
2012.

[6] H. Zhang, and S. Jarzabek, “XVCL: a mechanism for handling
variants in software product lines”, Science of Computer
Programming, vol. 53, no. 3, pp. 381-407, December 2004.

[7] D. Batory, and S. O’Malley, “The Design and Implementation of
Hierarchical Software Systems with Reusable Components”, ACM
Transactions on Software Engineering and Methodology vol. 1, no. 4,
pp. 355-398, October 1992.

[8] D. Batory, “Validating Component Compositions in Software System
Generators”, Proceedings of the 4th International Conference on
Software Reuse. Orlando: IEEE Press, 1996, pp. 72-81.

[9] openArchitectureWare Project, 2009,
http://www.openarchitectureware.org/

[10] I. Groher, H. Papajewski, and M. Voelter, “Integrating Model-Driven
Development and Software Product Line Engineering”, 2007,
http://www.eclipsesummit.org/summiteurope2007/presentations/ESE
2007_Model-Groher-MDDAndPLE.pdf

[11] M. Regensburger, C. Buckl, A. Knoll, and G. Schrott, “Model Based
Development of Safety-Critical Systems Using Template Based Code

Generation, Proceedings of the 13th IEEE International Symposium
on Pacific Rim Dependable Computing. Melbourne: IEEE Press,
2007, pp. 89-92.

[12] P. Friese, and B. Kolb, “Validating Ecore models using oAW
Workflow and OCL”, 2007,
http://www.eclipsecon.org/summiteurope2007/presentations/ESE200
7_Model-Friese-oAWAndOCL.pdf

[13] Eclipse Modeling Project, 2013, http://www.eclipse.org/modeling/

[14] T. W. Wong, S. Jarzabek, M. S. Soe, R. Shen, and H. Y. Zhang,
“XML Implementation of Frame Processor,” Proceedings of the 2001
Symposium on Software reusability: putting software reuse in context
ACM: Toronto, 2001, pp. 164-172.

[15] P. G. Bassett, “Framing software reuse - lessons from real world”.
Toronto: Prentice Hall, 1997.

[16] R. Heradio, D. Fernandez-Amoros, L. de la Torre, and I. Abad,
“Exemplar driven development of software product lines”, Expert
Systems with Applications, vol. 39, no. 17, pp. 12885–12896,
December 2012.

[17] D. Radošević, M. Konecki, and T. Orehovački, “Java Applications
Development Based on Component and Metacomponent Approach”,
Journal of Information and Organizational Sciences, vol. 32, no. 2,
pp. 137-147, December 2008.

[18] D. Radošević, T. Orehovački, and M. Konecki, “PHP Scripts
Generator for Remote Database Administration based on C++
Generative Objects”, Proceedings of the 30th MIPRO International
Convention on Intelligent Systems. Opatija: MIPRO, 2007, pp. 167-
172.

[19] I. Magdalenić, D. Radošević, and Z. Skočir, “Dynamic Generation of
Web Services for Data Retrieval Using Ontology”, Informatica, vol.
20, no. 3, pp. 397-416, 2009.

[20] I. Magdalenić, D. Radošević, and T. Orehovački, “Autogenerator:
Generation and execution of programming code on demand”, Expert
Systems with Applications, 2013,
http://dx.doi.org/10.1016/j.eswa.2012.12.003, in press.

[21] D. Radošević, T. Orehovački, and Z. Stapić, “Automatic On-line
Generation of Student's Exercises in Teaching Programming”,
Proceedings of the 21st Central European Conference on Information
and Intelligent Systems. Varaždin: FOI, 2010, pp. 87-93.

[22] K. Czarnecki, and U. W. Eisenecker, “Generative Programming
Methods, Tools, and Applications”. Boston: Addison-Wesley, 2000.

[23] B. W. Boehm, “A Spiral Model of Software Development and
Enhancement”, Computer, vol. 21, no. 5, pp. 61-72, May 1988.

