
 

 

Evaluation of Student Programming Assignments in 

Online Environments 
 

Mario Đanić, Danijel Radošević, Tihomir Orehovački 

Faculty of Organization and Informatics 

University of Zagreb 

Pavlinska 2, 42000 Varaždin, Croatia 

{mario.djanic, danijel.radosevic, tihomir.orehovacki}@foi.hr 
 

 
Abstract. This paper concerns the development of a 

Web-based learning programming interface that 

would assist students in acquiring programming 

skills. The current programming tools that are 

commonly used in application development do not 

prevent plagiarism and rote learning of previously 

written programs. An example of such a Web-based 

learning programming interface is presented and 

discussed in this paper. It can be adapted to meet 

learning needs and also provide additional features 

like the archiving of students’ solutions and their 

comparison for plagiarism detection.  

 
Keywords. online programming, Web interface, 

cloud-based approach 

 

 

1 Introduction 
 
Programming has often been treated as a form of an 

obscure art. Therefore programming instructors quite 

often make a mistake of assuming a certain level of 

knowledge from the audience whose primary 

motivation and interests do not lie in programming. 

The frustration of such an audience is further 

reinforced by using tools that were not built 

specifically for learning but rather promote values and 

processes that seem cryptic. 

Until recent years, it was almost unimaginable to 

develop applications using a Web programming 

interface. This can be attributed to the lack of 

appropriate development tools in form of Web 

applications, or their poor performance that would 

result in reduced interactivity and usability of the end-

user interface. 

The above-mentioned shortcomings can be 

overcome by Web programming interfaces. 

According to Synodinos [16], the advantages of such 

interfaces in program development include: 

 

 Ease of use – the editor is easily accessible and 

usually not intimidating (with lots of tools); 

 Real-time collaboration – written code is simply 

accessible to colleagues, so collaborative editing 

is possible; 

 Extensibility and self-hostedness – the 

programmer does not need to worry about 

installation of necessary libraries and other 

resources; 

 Universal accessibility – the code editor should 

work from anywhere and from any device that 

can use a Web browser. 

 

The most advanced recent Web IDE systems are 

based on cloud-computing systems. According to 

Mirzaei [10], cloud computing is a style of computing 

that allows users to access technology-enabled 

services from the Internet without knowledge or 

control over the technology infrastructure that 

supports them. By using services offered by cloud 

computing, one is essentially outsourcing the IT 

infrastructure through an Infrastructure-as-a-service 

(IaaS) type of scenario [18]. 

There are three types of services that Microsoft 

offers in form of cloud systems [7]: 

 Infrastructure as a Service (IaaS) – on-demand 

computing and storage to host, scale, and manage 

applications and services; 

 Platform as a Service (PaaS) – consists of an 

operating system, a relational database, and Web-

based services; 

 Software as a Service (SaaS) – subscription-based 

online services, on-demand applications and 

hosted services. 

Cloud systems typically include some kind of 

Virtualization Management, that is, the technology 

that abstracts the coupling between the hardware and 

the operating system. Virtualization enables the 

mapping of single physical resources to multiple 

logical resources or partitions [13]. Cloud-based Web 

IDE systems use a Web interface, which enables 



developers to use cloud resources in a desktop-like 

way. 

Drawing on the potential of Web programming 

interfaces, this paper focuses on a particular problem 

concerning the grading of student work. The specific 

questions it addresses are how to objectively grade a 

student assignment or perform a systematic source 

code plagiarism analysis. 

Possible advantages of Web IDEs for educational 

purposes are: 
 

 All students’ solutions could be collected in the 

same base. Accordingly, archiving of students’ 

solutions and their mutual comparison for 

plagiarism detection becomes much easier;  

 Feature enabling the generation of programming 

tasks variations. Students can receive different 

tasks, but all them will be generated from the 

same templates, as described in [14]; 

 Feature enabling peer assessment among 

students. 
 

In the following sections, we shall investigate 

several source code evaluation systems to see how 

they approach problems we identified in the process 

of learning programming. Our solution to these 

problems is also proposed.  

 

2 Related work 
 
Source code evaluation, or rather, the evaluation of 

the final application derived from it, is certainly not a 

novel concept. Different attempts at solving it have 

been made, with a varying degree of success. The 

purpose and usage of such systems vary widely, 

depending on the location and the goals their authors 

had in mind when designing them. However, our 

focus is on source code evaluation related to 

education and extracurricular activities related to that 

evaluation. Therefore in this paper we will distinguish 

between three types of source code evaluation 

systems: automated evaluators, online compilers and 

plagiarism detectors. 

Automated Evaluators. This type of evaluation 

systems can be further decomposed into dynamic and 

static approaches. Static approach includes systems 

that compare students’ submission with model 

programs and determines the degree of their 

similarity. Through comparison of students’ solutions 

with answer schemes provided by the teacher, the 

Web-based Automatic Grader System (WAGS) [20] 

evaluates programming exercises written in Visual 

Basic, C, or Java language. Thruong et al. [17] 

introduce a component for analysis of students’ Java 

and C# programs as a part of the Environment for 

Learning Programming (ELP) system. Their 

framework uses structural similarity analysis to 

convert students’ source codes into pseudo-code 

abstracts and compare them with teachers’ solution 

models. The main disadvantage of the static approach 

is that it cannot be used for testing the correctness of 

programs which contain input and output operations.  

Dynamic approach encompasses systems that 

evaluate student programs by running students’ 

submissions through a set of testing data. Online 

Judge [2] was implemented with the aim to help 

students in preparation for the ACM Intercollegiate 

Programming Contest. By using simple string 

matching, it compares submitted programs with pre-

defined solutions and thus checks their correctness 

and efficiency. Homework Generation and Grading 

(HoGG) system [11] consists of three parts. The 

framework, implemented in the Perl language, 

manages the entire grading process and communicates 

with other two parts (Driver and Evaluator) via 

MySQL database. In the first step of the grading 

process, the framework runs a Java compiler which 

compiles the source and saves executable code into a 

database. After successful compiling, the framework 

runs the Driver, which loads executable code together 

with student program methods and places the results 

of the run back to the database. In the final step, the 

framework invokes the Evaluator, which conducts bit-

vector-based evaluation of the run output. The 

drawback of the dynamic approach is that it does not 

evaluate the style that is used in problem solving, 

which is particularly important for novice 

programmers.           

AutoLEP [19] combines static analysis and 

dynamic testing, thus enabling the evaluation of both 

testing results and program constructs. The evaluation 

of submitted programs consists of two main steps.  

Firstly, the system checks the syntactic correctness of 

source code. If the code does not contain errors, the 

system checks the semantic similarity of the student’s 

submission with each model program.  

Online Compilers. Malinowski and Wilamowski 

[9] introduced the Intranet Compilers package. Its 

user interface allows the compilation of source code 

written in several different programming languages 

(C, C++, Fortran, Java, or Pascal) using one of the 

listed compilers (GNU, Borland, Microsoft, Sun). The 

basic element of the package is a PERL script that 

manages the compiling process and provides feedback 

in form of a report which includes error-related 

messages. Systems/(C, C++, ASM) [4] is a compiler 

aimed for developing mainframe applications in C, 

C++, or IBM assembler language. In its Web-based 

form, it allows users to compile up to 200 lines of 

source code. After submitting the code, it provides the 

generated assembly language source together with 

error-related messages. The disadvantage of both 

Intranet and Systems compilers is that they are meant 

only for compiling source code which was previously 

written in a text editor.  

Hazel developed Codepad [6], which allows 

compiling of code written in thirteen different 

languages. In addition to a compiler, it serves as an 

interpreter and a collaboration tool. Namely, users 

have the option to run and download source code, or 



share it in chat, e-mail and a social network via a 

short URL. However, there are two considerable 

limitations related to it. Firstly, it works only with 

output streams while input ones are not supported. 

Secondly, the processes of compiling and running the 

source code are lengthy. WebIDE [5] is a system that 

includes compiling, source code coloring, testing and 

debugging as well as data entry functionalities. At the 

top of the interface several buttons (comment, if, 

switch, while, load data, print) are located that serve 

to speed up the writing of source code. However, IDE 

does not possess features that would enable it to 

appropriately exploit code templates. Moreover, the 

input functionality seems to be broken as any attempt 

to use even the simplest input function results in the 

termination of the program due to the time limit (1 

second). Ace editor [1] is a successor of the Mozilla 

Skywriter (Bespin) Project that serves as the primary 

editor for Cloud9 IDE. It represents an extension of 

functionalities and quality in use of all the 

aforementioned online compilers and thus enables 

coding in the cloud.    

Plagiarism Detectors. JPlag [12] allows 

comparison of source codes written in Java, Scheme, 

C or C++ programming languages. In the first step, it 

transforms every program into a string of canonical 

tokens. Thereafter, using the Greedy String Tiling 

algorithm, it conducts pairwise comparison of token 

strings and thus tries to determine identical items. The 

percentage of token strings that can be covered is the 

extent of similarity between evaluated programs. 

Winnowing [15] is a fingerprint-based pair-wise 

algorithm that decomposes each program into k-

grams (contiguous substrings of length k). 

Subsequently, it hashes each k-gram and selects a 

small subset of these hash values that become the 

program’s fingerprint. In the final step, the algorithm 

tries to find substring matches between sets of 

evaluated programs. RoboProf [3] is a learning 

environment that allows for the detection of 

plagiarism during automatic grading of student 

programs. Before compiling, a Java applet (which 

runs on a student’s computer) adds a watermark to the 

code. A watermark is a binary number composed of a 

year, student id, exercise id, and checksum. If two or 

more students submit a solution with the same 

watermark, RoboProf identifies them as plagiaries. 

The main shortcoming of this system is that, while it 

compares watermarks, it does not consider parts of the 

programming code, which makes it vulnerable to 

bypassing. Konecki et al. [8] developed a prototype 

system that compares source codes written in C and 

C++ programming languages. Prior to comparison, 

the source codes need to be simplified by applying 

several filters, including: placing each instruction and 

brackets in a separate line; omitting input / output 

instructions, arguments of all functions, brackets 

without body, declarations, blank spaces and 

comments, and unifying names of functions and 

variables. As a result, the system reports the number 

of similar and different lines and the percentage of 

similarity between the evaluated codes. Given that the 

prototype is developed in Visual Basic, for the 

purpose of our research it would be necessary to adapt 

both the algorithm and the filters to the Web 

environment.  

While the end goal of the aforementioned types of 

systems is very similar, ways to achieving  it and the 

features that will be included in the process can vary 

to a greater or lesser degree. As discussed above, all 

the three types of evaluation systems have their 

advantages and disadvantages, but none of them 

seems fully adequate for their specific purpose: 

evaluation of student programming assignments. 

Moreover, we feel that the current solutions are 

simply not suited for an enjoyable programming 

environment, and would like to stimulate students by 

introducing them to a fundamentally different, yet an 

enjoyable way to learn. The main objective of our 

research is to develop a platform that, as a 

complementary solution, would combine the 

advantages of the three types of evaluation systems.  

The following section contains the introduction to 

basic concepts we created to facilitate more 

productive learning and automatic source code 

evaluation, that would lead to reduced teachers’ 

workload and make the whole grading process more 

objective.  

 

3 Proposed solution concept 
 
Drawing on various shortcomings we identified in the 

methods and tools that are currently used for teaching 

and learning programming, we designed a solution 

aimed not only to foster student productivity and 

interest in the subject, but also to help instructors and 

various other persons involved in teaching 

programming to identify and objectively evaluate 

student assignments. 

Strictly speaking, the solution we designed is 

composed of two parts: Web IDE and the system 

daemon component. A clear distinction between the 

two components allows for a cleaner architecture 

leading to flexibility in terms of user-friendliness and 

features. 

The Web IDE component is the user-facing 

component in our architecture. Therefore one of the 

primary requirements for it is to be user-friendly and 

to expose a minimum of the needed features without 

the unnecessary interface clutter. 

On the other hand, the system daemon component 

is used to facilitate communication between Web IDE 

and system components, such as the code compiler. 

This approach is in contrast to direct compiler access, 

and was selected due to the increased security and 

flexibility it provides, despite the additional 

complexity in terms of development and deployment 

it can cause. 

In order to effectively differentiate between 

various implementations of our proposed solutions, 



we developed a set of guidelines concerning the 

implementation of such a system in cases where new 

systems are developed. Our concept is shown in 

Figure 1. 

 
Figure 1: Concept of Web IDE  

 

Our concept defines the necessary features set and 

the usability guidelines that are designed to create a 

de-facto standard in the implementation of similar 

systems aimed to aid young students in learning 

programming. The feature set and other guidelines to 

be followed are: 

 

 Code editor with syntax-highlighting; 

 Easy sign-up process;  

 Code storage for easy re-editing; 

 System daemon for compiling running as user; 

 Facilitator between the daemon and the Web 

IDE; 

 Helpful programming materials. 

The extension of the set of guidelines aimed for 

convenience and further assistance to both students 

and instructors in the process of learning and teaching 

programming includes: 

 

 No-sign up process (university or school-wide 

LDAP or similar); 

 Public code and assignments storage for peer 

review and studying; 

 In-code help system: 

 Hook system integrated in the daemon; 

 Code plagiarism detection; 

 Automatic code evaluation. 

 

The daemon is the most interesting component of 

the system since it has the potential to substantially 

improve the way programming is currently perceived 

both by students and instructors. 

In our implementation, Web IDE communicates 

with a message queue, whereby it passes all the tasks 

that need to be executed, mainly passing the message 

to the lower components of the system. Once the 

message containing the task reaches the message 

queue, the daemon takes it out of the queue and 

executes the required tasks. 

The daemon also has a built-in hook system, 

separated into two clearly separated categories: pre-

compile and post-compile hooks. The built-in hook 

system allows for further system customizability and 

flexibility without changing the underlying code and 

risking system instability and problems. 

The pre-compile hook could be used to verify 

various segments, the most important of which, in our 

case, is code analysis to determine the areas of 

program execution where input is needed. In contrast, 

the post-compile hook can be used for reporting 

compile success to the upper components, code 

plagiarism detection or automatic code evaluation. 

In our implementation, hooks are designed in a 

way to allow virtually unlimited extensibility and 

usability, so the uses mentioned here are certainly not 

exhaustive. In other words, it is possible to extend the 

system the features needed for a particular use. 

Considering various changes that this model and 

concept bring to the programming class, the next 

section focuses on presenting their possible uses in 

educational and other institutions for which teaching 

and learning programming is essential. 

 

4. Example of a Web IDE 
 
Our prototype is only the initial step in implementing 

the concept presented in this paper. It uses a g++ 

compiler installed on a Linux Web server. Although 

some of its features are still rudimentary the IDE 

enables writing C++ programs, their execution and 

debugging. The online C++ IDE
1
 was therefore 

developed as an example of a learning-oriented Web 

IDE. As shown in Figure 2, there are four sections in 

the Web form: 

 

 Source code. Contains C++ source code to be 

compiled. Code should be copied from the 

clipboard. 

 Compiler output. Contains compiler error report 

after compiling (Figure 3). 

                                                 
1
 The example is available at: 

http://arka.foi.hr/~darados/online_ide/handler.cgi 



 Program input. Because of the restrictions of the 

Web user interface, the textual input has to be 

specified separately. Each cin instruction reads a 

piece of program input (separated from others by 

blank or newline).  

 Program output. The program output after 

execution. 

 

 
 

Figure 2: Online C++ IDE with program output 

 

 
 

Figure 3: Compiler report 

 

As a result, this Web IDE is very easy to use for 

the purpose of verifying program correctness. To 

ensure its correct operation, some adaptations of the 

IDE to the Web interface were needed. Most of the 

adjustments are the related program input and 

program output. For the purpose of achieving 

program input, the system code is changed internally, 

that is, in a way invisible to the programmer, as 

follows: 

 

 The #include "file_reading.cpp" is added at the 

beginning of the C++ code with the purpose of 

redefining the standard cin object. Next, cin reads 

the textual file containing the data from the 

Program input field. The library "file_reading.cpp": 

 

 

 

#include <fstream> 

using namespace std; 

class cfile:public fstream{ 

  public: 

  cfile(){ 

    open("input.txt",ios::in); 

  } 

  ~cfile(){ 

    close(); 

  } 

}; 

cfile cin;   //new cin object 

 

As shown, the new cin object is from class cfile 

that inherits fstream. The constructor opens the file 

containing program input for reading and the 

destructor closes that file. 

 

 All occurrences of the cin in program code (also 

invisible to the programmer) are replaced by ::cin to 

specify the global scope of the program. Otherwise, 

cin would be reported as undeclared. 

 

Once it is started, program output is redirected to 

the 'output.txt' textual file, and loaded to the Program 

output field in the Web form. The system needs to 

scale to a reasonable number of simultaneous compile 

and capturing processes. Further research is therefore 

needed to analyze the possibilities of passing the 

correct input and capturing the output.  

 

5 Conclusion 
 
Until recent years, developing applications using a 

Web programming interface was hardly feasible. This 

can be explained by the lack of appropriate 

development tools in form of Web applications and 

reduced interactivity of Web interfaces. 

 The above-mentioned shortcomings can be 

overcome by Web programming interfaces. Even 

small-scale Web IDE systems, such as the one 

developed within our research, offer certain 

advantages to the programmer: 

 There is no need for opening program projects. 

It is sufficient to simply copy the program code 

into a textual field in the Web form. 

 Programmer does not need to enter all the 

program input via the keyboard for each testing, 

so this IDE can be used for testing purposes. 

Furthermore, after additional improvements, the 

Web IDE system could be used for educational 

purposes. These improvements include: 

 User authentication; 

 Repository of students’ program solutions; 

 Comparing solutions for plagiarism analysis 

purposes; 

 User interface interactivity enhancements, e.g. 

by using Ajax technology. 

 



References 
 

[1] Ajax.org: Ace Cloud9 Editor, 2010, available at 

http://ace.ajax.org/, Accessed: 10
th

 May 2011. 

[2] Cheang B, Kurnia A, Lim A, Oon W-E: On 

automated grading of programming 

assignments in an academic institution, 

Computers&Education, 41(2), 2003, pp. 121-131. 

[3] Daly C, Horgan J: A Technique for Detecting 

Plagiarism in Computer Code, The Computer 

Journal, 48(6), 2005, pp. 662-666. 

[4] Dignus: Systems compilers, 2009, URL: 

http://www.dignus.com/products.shtml, 

Accessed: 10
th

 May 2011. 

[5] Janković I, Gledec G: WebIDE – online tool for 

remote teaching and programming (in 

Croatian), Proceedings of the 33
rd

 MIPRO 

International Convention on Computers in 

Education, 24
th

 – 28
th

 May, Opatija, Croatia, 

2010, pp. 385-388.  

[6] Hazel S: Codepad, URL: http://codepad.org/, 

Accessed: 10
th

 May 2011.  

[7] Hines P: Cloud Services, Microsoft Download 

Center, p. 1-16, URL:            

http://download.microsoft.com/documents/austral

ia/health/MSFTCloudServicesBrochure.pdf, 

Accessed: 10
th

 May 2011. 

[8] Konecki M, Orehovački T, Lovrenčić L: 

Detecting Computer Code Plagiarism in 

Higher Education, Proceedings of the 31
st
 

International Conference on Information 

Technology Interfaces, 22
nd

 – 25
th

 June, Cavtat, 

Croatia, 2009, pp. 409-414. 

[9] Malinowski A, Wilamowski BM: Web-based 

C++ Compiler, Proceedings of the ASEE 2000 

Annual Conference, 18th – 21st June, St. Louis, 

MO, USA, 2000, p. 1-7, URL: 

http://www.eng.auburn.edu/~wilambm/pap/2000/

ASEE2000_Complilers.pdf 

[10] Mirzaei N: Cloud Computing, Pervasive 

Technology Institute Report, Community Grids 

Lab, Indiana University, 2008, p. 1-12, URL: 

http://grids.ucs.indiana.edu/ptliupages/publication

s/ReportNarimanMirzaeiJan09.pdf, Accessed: 

10
th

 May 2011. 

[11] Morris DS: Automatic grading of student’s 

programming assignments: an interactive 

process and suite of programs, Proceedings of 

the 33
rd

 ASEE/IEEE Frontiers in Education 

Conference, 5
th

 – 8
th

 November, Boulder, CO, 

USA, 2003, p. 1-6.  

[12] Prechelt L, Malpohl G, Philippsen M: Finding 

Plagiarisms among a Set of Programs with 

JPlag, Journal of Universal Computer Science, 8 

(11), 2002, pp. 1016-1038. 

[13] Rimal BP, Eunmi C, Lumb I: A Taxonomy and 

Survey of Cloud Computing Systems, 

Proceedings of the 5
th

 International Joint 

Conference on INC, IMS and IDC, 25
th

 – 27
th
 

August, Seoul, Korea, 2009, pp. 44-51.  

[14] Radošević D, Orehovački T, Stapić Z: 

Automatic On-line Generation of Student´s 

Exercises in Teaching Programming, 

Proceedings of the 21
st
 Central European 

Conference on Information and Intelligent 

Systems, 22
nd

 – 24
th

 September, Varaždin, 

Croatia, 2010, pp. 87-93. 

[15] Schleimer S, Wilkerson DS, Aiken A: 

Winnowing: Local Algorithms for Document 

Fingerprinting, Proceedings of the 2003 ACM 

SIGMOD International Conference on 

Management of Data, 9
th

 - 12
th

 June, San Diego, 

CA, USA, 2003, pp. 76-85.   

[16] Synodinos DG: Web-based IDEs to become 

mainstream? InfoQ.com, 2009, URL: 

http://www.infoq.com/news/2009/02/web-based-

ide, Accessed: 10
th

 May 2011. 

[17] Truong N, Roe P, Bancroft P: Automated 

Feedback for “Fill in the Gap” Programming 

Exercises, Proceedings of the 7th Australasian 

conference on Computing education, Newcastle, 

NSW, Australia, 2005, pp. 117-126. 

[18] Vaquero M, Rodero-Merino L, Caceres J, 

Lindner M: A Break in the Clouds: Towards a 

Cloud Definition, ACM SIGCOMM Computer 

Communication Review, 39(1), 2009, pp. 50-55. 

[19] Wang T, Su X, Peijun M, Yuying W, Kuanquan 

W: Ability-training-oriented automated 

assessment in introductory programming 

course, Computers & Education, 56(1), 2011, pp. 

220-226. 

[20] Zamin N, Mustapha EE, Sugathan SK, Mehat M, 

Anuar E: Development of a Web-based 

Automated Grading System for Programming 

Assignments using Static Analysis Approach, 

Proceedings of the International Conference on 

Technology and Operations Management, 1
st
 – 

2
nd

 December, Institute Technology Bandung, 

Indonesia, 2006. 


