

Error Messaging in Generative Programming

Danijel Radošević, Ivan Magdalenić, Tihomir Orehovački

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

{danijel.radosevic, ivan.magdalenic, tihomir.orehovacki}@foi.hr

Abstract. Standard programming tools use a system

of error messages and warnings to help programmers

in finding syntax and logical errors in their programs.

Generative programming differentiates the level of

generator from the level of generated application. The

source code is synthesized at the level of generator

from a set of code templates according to application

specification and rules defined by generator

configuration. Code templates, application

specification and generator configuration are

mutually dependent and error in any part may result

in incorrect source code. This paper deals with

possibilities of introducing error messages that are

specific at the level of generator. An example of

generator is developed and discussed.

Keywords. generative programming, generator,

error messages

1 Introduction

Generative Programming is one of the concepts of

Software Product Lines (SPL). SPL provides a means

for composing software products that match the

requirements of different application scenarios from a

single code base and can be developed using a variety

of implementation techniques [13]. Other concepts in

this area are pre-processor definitions, components,

Aspect Oriented Programming, Feature-Oriented

Programming (FOP) [8][13], Aspectual Feature C

Modules (AFMs) [1] and frames like XVCL [15].

Using Generative Programming helps to increase the

software making productivity, by producing it in a

way comparable to industrial production. Almost

every new technology has its own specific problems.

In the case of the generative programming problems

arise during the creation of program code templates,

building of source code generator and definition of

application. The creation of source code requires

high-quality error messaging system when using

generative programming technique.

Our work is based on the SCT dynamic frames

model that is used for source code generation. The

SCT model consists of three basic components:

Specification (S), which describes the application

characteristics, Configuration (C), which describes the

rules for building applications, and Templates (T),

which refers to application building blocks. The SCT

model is described in detail in [9]. It is primarily

designed for web application development, but there

are no constraints to using the SCT model in

development of any kind of a source-code, regardless

to problem domain and programming language.

This paper introduces error messaging system to

the SCT dynamic frames model. Introduced error-

related messages are compared to similar messages in

object-oriented programming languages and some

generative systems.

 The paper is organized as follows: Related work

is presented in section 2. The basics of the SCT model

are explained in section 3. Possible SCT model

inconsistencies are discussed in section 4. Section 5

describes error messaging in generative programming,

which is followed by one example in section 6. The

conclusion is given in section 7.

2 Related work

The process of writing code in one of the object

oriented programming languages [6] consists of four

steps: writing the source code, compiling the source

code, linking the executable code and finally testing

the program. If during the writing of source code a

programmer makes syntax or logical mistake, in the

remaining three phases following types of error

related messages may occur:

• Compile-time error message indicates that

source code violates syntax or grammatical rules

of a programming language. Before it is possible

to compile source code into object code, it is

necessary to correct all syntax errors. The most

common examples of compile-time errors are

[12][14]: Undeclared Variables, Undeclared

Functions, Missing Semicolons, Extra

Semicolons, Incorrect Number of Braces,

Unmatched Parentheses, Unterminated Strings,

Left-Hand Side of Assignment does not Contain

an L-Value, Value-Returning Function has no

Return Statement, Converting Errors (e.g. int* to

int**), and Illegal Function Overloading.

• Link-time error message prevents the

generation of executable code when it is not

possible to link object codes. Some examples of

frequent logical mistakes that lead to occurrence

of link-time error messages are [11]:

Uninitialized variables, Setting a variable to an

uninitialized value, Using a single equal sign to

check equality, Divide by Zero, Forgetting a

Break in a Switch Statement, Overstepping Array

Boundaries, and Misusing the && and ||

operators.

• Run-time error message occur in the testing

phase when the program or any of its parts

returns the unexpected results. Most often causes

of this kind of messages are following logical

errors [14]: Infinite Loop, Misunderstanding of

Operator Precedence, Dangling Else, Off-By-One

Error, Code inside a Loop that does not Belong

There, and Not Using a Compound Statement

When One is Required.

• Warning message do not interrupts the process

of compiling or linking code but often indicates

the cause of errors that occur during the testing

phase. Using ‘=’ when ‘==’ is Intended, Loop has

no Body, and Uninitialized Variable are

examples of common syntax warnings [14].

Recent study [10] into analysis of students’

compilation behavior revealed that “Unused

Variable”, “Undeclared Variables”, “Expected `;'

Before” and “Control Reaches End of Non-Void

Function” are most frequent error related messages

that occur when writing source code. It should be

noted that “Unused Variable” and “Control Reaches

End of Non-Void Function” are warning messages

while “Undeclared Variables” and “Expected `;'

Before” are compile-time error messages. Error

related messages are not only useful within

aforementioned steps of writing programming code,

but also during the process of generative application

development. There are three mature approaches to

generative programming: XVCL, GenVoca and

Codeworker.

XVCL (XML-based Variant Configuration

Language) is a meta-programming language based on

the same concepts as frame technology [2]. It can be

used for handling variants in program code or

software product lines. To facilitate the

implementation of the variations, we can use XVCL

commands to mark the variation points in program

and thus decompose it into generic and adaptable

components called x-frames. GenVoca (a mixture of

the names Genesis and Avoca) is a composition

methodology aimed for creating system families. It is

based on two main ideas [3]: feature modularity

which came out of inheritance and programming style

called programming-by-difference [4]; and program

objectification. In GenVoca, each module is

comprised of set layers where each layer specifies an

aspect of module. Codeworker [5] is a versatile

parsing tool based on generative technique. It is used

for generating source code by parsing existing or

newly created language. A scripting language

provided by Codeworker is configured for the writing

of code generation templates and for the description

of language grammars.

Although principles of XVCL, GenVoca and

Codeworker have been tested in practice, studies

related to the error messaging in generative

application development were not well explored

before.

3 SCT model basics

The SCT generator model [9] is developed on the

basis of previous Scripting model of generator (SGM)

[7]. The model defines the source code generator from

three kinds of elements: Specification (S),

Configuration (C) and Templates (T). All three model

elements together make the SCT frame (Figure 1):

• Specification contains features of generated

application in form of attribute-value pairs.

• Template contains source code in target

programming language together with connections

(replacing marks for insertion of variable code

parts)

• Configuration defines the connection rules

between Specification and template.

Figure 1. SCT frame

Starting SCT frame contains the whole

Specification, the whole Configuration, but only the

base template from the set of all Templates. Other

SCT frames are produced dynamically, for each

connection in template, forming generation tree

(Figure 2). So, SCT generator model is generator

model based on dynamic frames, unlike some other

frames-based generator models, like XVCL [2].

It's important that SCT based generator is fully

configurable, so the whole generation process is

defined in Configuration, with no need to change the

code of generator itself.

Figure 2. The generation tree

As shown in Figure 2, the process of code generation

is recursive, where each level behaves as a whole

generator.

4 Possible SCT model

inconsistencies

There are several possible SCT model inconsistencies

that can occur during development of source code

generator: the existence of all needed files, correct

syntax according to SCT model definition,

insufficient Specification and mutual dependencies of

SCT elements.

Because the SCT model assumes the use of

several files, the first step is to check the existence of

these files. The next step is checking the syntax of

Specification and Configuration. The check of the

syntax of programming templates cannot be done at

this point since it can be done only on final source

code. If some necessary attributes and their values

are not specified, some connections in templates will

be unused and the generated source code will be

invalid. This could be detected regardless of

compiling: the necessary Specification attribute could

be found in Configuration according to the unused

connection in the generated code.

Specification and Configuration are mutually

dependent. All attributes in Specification have to be

defined in Configuration. Configuration and

Templates are also mutually dependent. All

connections that appear in program templates have to

be defined in Configuration. The check of existence

of all needed templates cannot be done because SCT

model allows selection of templates dynamically

based on values from the specification.

There are some issues related to syntactic

correctness of the generated code that are as a

consequence of the process of generating source code.

These errors are hard to detect because they depend

on target programming language. Some of them are:

usage of unsafe names in Templates, calls of

functions prior to their declarations, and breaking

program restrictions.

The usage of unsafe names in Templates

(variables, functions, classes etc.) is potential cause of

syntactic incorrectness because the attribute values

from Specification could collide with the names in

Templates. Using names with prefixes/suffixes could

reduce the risk. Some programming languages require

that functions are to be defined prior to their calls.

The order of Specification attributes could lead to the

breach of that rule. This could be solved by providing

function declarations prior to their use (which should

be included in Templates or generated). Breaking

program restrictions can be done be exceeding the

size limit and other restrictions caused by

Specification values.

Generally, the issues can be avoided/solved by the

appropriate generative application development

process, where building generators and generated

applications are closely connected processes. The

error messaging could significantly help in generative

application development process.

5 Error related messages

The current error related messages introduced in the

SCT generator model include errors, as obligatory

kind of messages, and warnings that could be ignored

in some cases. That is similar to error related

messages in standard programming languages (e.g.

structural and object-oriented). The whole list of error

related messages in the SCT generator model is given

in Table 1:

Error or
Warning

Message/Explanation

Error 01

Specification attribute <attr. name> is not used in Configuration.

Incomplete Configuration or wrong specification attribute.

Error 02

No template file <file name>

Template that is specified in Configuration was not found.

Error 03

Connection <conn.> was not found in Configuration.

Connection in '#'-es that is used in template was not specified in
Configuration.

Error 04

Can't write into file: <file name>

Generated code can't be written in a file due to file/folder
protection, or file in use.

Error 05

Can't open Specification file: <file name>

Missing Specification file or file can't be read due to file/folder
protection, or file in use.

Error 06

Can't open Configuration file: <file name>

Missing Configuration file or file can't be read due to file/folder
protection, or file in use.

Error 07

Output types are not specified. Use OUTPUT keyword.

At least one output type has to be specified in Specification.

Warning
01

Attribute <attr. name> is used in Configuration, but not specified
in Specification.

Some attributes, and their values, should not to be specified in all
cases, so this message sometimes could be ignored.

Warning
02

Possibly incorrect output type <output type> for <attr. value>.

It is possible explanation of Error 01, for cases where <attr.
value> is a file name.

Table 1: Error-related messages

All error messages are related to SCT model

inconsistencies and help in building of SCT based

generators in a way similar to error messages in

standard programming languages. Decomposition of

error related messages among SCT model elements is

shown in Figure 3.

<
a
tt
ri
b
u
te
s
>

#
c
o
n
n
e
c
ti
o
n
s
#

Figure 3. Decomposition of error-related messages

Some errors related messages are placed in the

interconnection of two model elements because

Specification and Configuration share Specification

attributes, while Configuration and Templates share

connections (Figure 3). The example or Error report is

given in Figure 4.

Figure 4. Example of Error report

As shown in Figure 4, each error-related message

occurs as many times as it appears in generation

process.

6 An Example

Example is given for C++ linked lists generator.

Generator
1
 uses Specification, Configuration and set

of Templates to produce C++ source code.

1 Example is available at

http://generators.foi.hr/SCT_error_messages_example/index.html

Specification of the example generator includes

one output type (main), and two lists (Students and

Courses) with their attributes:

OUTPUT:main

main:output/linked_list.cpp (generated file)

list:Students (list name)

+key:student_id1 (subordinated attributes)
+field_int:student_id1

+field_char:surname

+field_char:name

list:Courses (list name)

+key:course_id (subordinated attributes)
+field_int:course_id

+field_char:course_name

Possible erroneous situations that target

Specification are as follows:

• Specification file can't be opened (Error 05)

• No one output type specified (Error 07)

• Incorrect output type (Warning 2; occurs if

filename specified for attribute that is not an

output type)

Configuration defines one basic template file

(main.metascript) that is connected to first output type

in Specification, and a list of configuration rules:

#1#,,main.metascript

#class_headings#,list,

 class_heading.metascript

#list#,list

#classes#,list,class.metascript

#attributes#,field_*,field_*.metascript

#field#,field_*

#attributes_entry#,field_*,

 attributes_entry.metascript

#attribute#,field_*

#attributes_print#,field_*,

 attributes_print.metascript

#head_allocation#,list,

 head_allocation.metasc ript

#menu#,list,menu.metascript

#cases#,list,cases.metascript

#key#,key

As could be seen in example, each Configuration

rule consists from connection (in '#'-es), attribute

name (as defined in Specification) and, optionally, a

lower level template (meaning that connection should

be replaced by whole template). Most of the

erroneous in SCT based generators are connected with

Configuration:

• Configuration file can't be opened (Error 06)

• No appropriate Configuration rule for

Specification attribute (Error 01)

• Attribute defined in Configuration is not used in

Specification (Warning 01; could be ignored if

attribute is optional)

• Template that is specified in Configuration was

not found or can't be opened (Error 02)

• Connection from Templates is not specified in

Configuration (Error 03)

Templates consist from 14 textual files

containing code templates. Main template is defined

in Configuration (main.metascript) giving the base

structure of program code to be generated:

// C++ linked lists

// SCT generated example

#include <iostream>

using namespace std;

#class_headings# (class headings)

#classes# (class bodies)
int main(){

int choice,arg;

int counter1;

#head_allocation# (allocation of lists headings)
do{

counter1 = 1;

#menu# (user options)
 cout << "\n 0. Exit";
 cout << "\n--------------------";

 cout << "\n-> Your choice: ";

 cin >> choice;

 counter1 = 1;

#cases# (function calls)
}while(choice != 0);

return 1;

}

Connections #class_headings#, #classes#,

#head_allocation#, #menu# and #cases# have to be

defined in Configuration (otherwise, Error 03 occurs).

Generated code includes code templates together

with the Specification values:

// C++ linked lists

// SMG generated example

#include <iostream>

#include <string.h>

using namespace std;

class Students; (class headings)
class Courses;

class cStudents{ (class body)
public:

cStudents *next; (pointer to next element)

int student_id; (attributes)
char surname[40];

char name[40];

. . . .

Generated code still can contain some syntax and

logical errors, regardless to correct SCT model. In the

example, these errors can be caused by following:

• insufficient Specification, e.g. attributes were not

specified,

• unsafe names were used in Templates, e.g.

variable names are same as Specification values

and

• calls of functions prior to their declarations

(caused by order in Specification).

7 Conclusion

Generative programming is a relative new approach in

automatic program generation, and there are no many

studies about error messaging systems in this

approach.

The system of error-related messages, that is part

of our SCT generation model, is presented in this

paper. Unlike object oriented programming

languages, errors in our system are related to the

consistency of the SCT model. Warnings refer to

possible inconsistencies, and developer should decide

about their relevance. The use of such error-related

messages systems makes building of source code

generators easier.

Developed system of error-related messages was

tested on the example of SCT based generator which

produces program code in C++ that deals with linked

lists.

References

[1] Apel S, Leich T, Saake G: Aspectual Feature

Modules, IEEE Transactions on Software

Engineering (TSE), 34(2), 2008, pp. 162-180.

[2] Bassett P: Framing Software Reuse - Lessons

From Real World, Yourdon Press, Prentice

Hall, 1997.

[3] Blair J, Batory D. A Comparison of Generative

Approaches: XVCL and GenVoca, Technical

Report, ftp://ftp.cs.utexas.edu/pub/predator/xvcl-

compare.pdf

[4] Johnson RE, Foote B: Designing Reusable

Classes, Journal of Object-Oriented

Programming, 1(2), 1988, pp. 22-35.

[5] Lemaire C: CodeWorker: A universal parsing

tool & a source code generator,

http://codeworker.free.fr/

[6] Lovrenčić A, Konecki M, Orehovački T: 1957-

2007: 50 Years of Higher Order Programming
Languages, Journal of Information and

Organizational Sciences, 33(1), 2009, pp. 79-150.

[7] Magdalenić I, Radošević D, Skočir Z: Dynamic

Generation of Web Services for Data Retrieval
Using Ontology, Informatica, 20(3), 2009, pp.

397-416.

[8] Prehofer C: Feature-Oriented Programming: A

Fresh Look at Objects. Lecture Notes in

Computer Science, Springer-Verlag, Berlin,

Germany, 1241, 1997. pp. 419-443.

[9] Radošević D, Magdalenić I: Source Code

Generator Based on Dynamic Frames, Journal

of Information and Organizational Sciences,

2011, in press.

[10] Radošević D, Orehovački T: An Analysis of

Novice Compilation Behavior using
Verificator, Proceedings of the 33

rd
 International

Conference on Information Technology

Interfaces, 27
th

 – 30
th

 June, Cavtat, Croatia, 2011,

in press.

[11] Rhodes G: Common Beginner C++

Programming Mistakes. Valencia Community

College,

http://fd.valenciacc.edu/file/grhodes4/CommonB

eginnerMistakes.pdf [20/04/2011]

[12] Rinker B: Error Messages and Debugging in

C++. University of Idaho, Computer Science

Department, 2002. http://www2.cs.uidaho.

edu/~rinker/cs113/errors.pdf [20/04/2011]

[13] Rosenmüller M, Siegmund N, Saake G, Apel S:

Code Generation to Support Static and

Dynamic Composition of Software Product
Lines, Proceedings of the 7th International

Conference on Generative Programming and

Component Engineering, 19
th

 - 23
th

 October,

Nashville, Tennessee, USA, 2008, pp. 3-12.

[14] Teorey TJ, Ford AR: Practical Debugging in

C++, Prentice Hall, 2001.

[15] Zhang H, Jarzabek S: XVCL: a mechanism for

handling variants in software product lines,

Science of Computer Programming, Elsevier,

The Netherlands, 53(3), 2004, pp. 381-407.

