

Towards Automatic Generation

of Parallel Programs

Nikola Ivković, Danijel Radošević, Ivan Magdalenić

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

{nikola.ivkovic, danijel.radosevic, ivan.magdalenic}@foi.hr

Abstract. Although there are various parallel

programming models introduced and supported

by different communication protocols, the

building of parallel applications is still a kind of

handwork. This paper deals with opportunity of

usage Generative Programming techniques in

parallelization of program functions written in a

standard, non-parallel manner. Particularly, the

usage of SCT generator model is discussed

within generation of parallel programs based on

the MPI communications protocol. An example

of such generator was developed and tested.

Keywords. generative programming, generator,

parallel program, distributed system

1 Introduction

Various optimization problems, simulation and

scientific calculations are often time-consuming and

require computers with powerful and expensive

hardware. Often, the computing problems can be

decomposed into several subtasks that can run

simultaneously on multiple computers. Parallel

execution of programs enables their execution faster

and such implementations are cheaper. But the

parallel program execution brings new problems. All

tasks cannot be parallelized. It is difficult to create

and synchronize tasks and it is hard to discover bugs

in programs. These are some of the obstacles in use of

parallel programs.

This paper deals with opportunity of using

Generative Programming techniques in parallelization

of program functions written in a standard, non-

parallel manner. There are a lot of generative

programming techniques, and we decided to apply the

already proven SCT model of source code generator

[1]. By using generative programming techniques, we

want to hide the complexity of constructing parallel

programs that can run on multiple computers using

the MPI protocol.

The basic idea of our solution is as follows. A

programmer divides the problem into subtasks that

can run in parallel. Our system generates needed

source code that enables parallel execution. The

programmer executes the program on multiple

computers. The programmer does not need to have the

knowledge of parallel programming techniques.

Issues addressed in our solution are creation and

scheduling of tasks on multiple computers, their

mutual communication and results collection. This is

the first step toward building of such a system and the

proposed solution is not complete. For example, a

problem of possible various data type is not covered

in this paper.

The paper is organized as follows: a background

to the research is given in section 2. A model of

parallelization is presented in section 3 which is

followed by a case study described in section 4. The

short description of SCT source code generator model

is presented in section 5 followed by description of

generator implementation. The conclusion is given in

section 6.

2 Backgrounds to the Research

Because of all the hardness of parallel

programming, for a long time researchers are trying to

resolve a problem of automated parallelization. At

this point, a complete automation of code

parallelization at the compiler level seems to be

unachievable goal. Currently there are only partial

solutions. One is automatic parallelization of

sequential code that can produce parallel code in

some special cases. The rest of the code that could be

parallelized is left sequential due to imperfection of

current methods and tools. For a single multiprocessor

machine this can be achieved purely on compiler

level. For a system of processors that communicate

over network some standardized protocol for

exchanging data has to be supplemented, usually with

additional libraries.

Another approach is to relay on human

intervention, but also to provide substantial help for

creating parallel programs. We use this second

approach by using SCT source code generator model

[1] for the generation of the needed source code. The

SCT model is designed to work with code-fragment-

sized components. The same approach is used in [2].

Our components are not necessarily strictly connected

to program organizational units, like classes or

methods. Consequently, our approach differs from

the metaclass-based approaches, as described by

Grigorenko et al. [3] and Tolvanen and Rossi [4].

Our implementation uses Message Passing

Interface (MPI) that has become de facto standard for

distributed system application. The MPI is a

language-independent communications protocol that

uses a message-passing paradigm to share data and

states among a set of cooperative processes running

on a distributed memory system [5]. MPI

specification (Forum, MPI) defines a set of routines to

support various parallel programming models such as

point-to-point communication, collective

communication, derived data types, and parallel I/O

operations [5]. It is widely used in versatile

distributed systems for solving challenging

computational problems [6, 7,8, 9, 10].

3 A model of parallelization

To utilize a parallel architecture, a computational

task has to be disassembled to a set of smaller

subtasks that can be executed in parallel. There are

different paradigms of parallel execution, but multiple

instructions – multiple data streams (MIMD)

architecture is the most general and most useable in

practice.

In principal MIMD system can be implemented as

shared memory or distributed memory system. A

shared memory system consists from tightly coupled

processor cores that have direct access to a pool of

memory called shared memory. A distributed memory

system is made from independent processing nodes

that communicate using network.

In generally it is easier to write programs for a

shared memory system then for a distributed memory

system, since reading and writing memory doesn’t

need special mechanicals for communication.

Nevertheless, an appropriate synchronization for

writing memory is inevitable to ensure correct

execution. Another advantage of a shared memory

system is a fast access to the shared memory, while

nodes in a distributed memory system have to

exchange messages to communicate (which usually

takes mach more time). Time to exchange a message

is more critical in the distributed memory system

called grid. In a grid nodes are usually geographically

distant and have network connections of lower speed,

then in the distributed memory system called cluster,

where nodes are connected with a high speed LAN

network. In contrast to shared memory systems that

are less scalable and have to be specially

manufactured, distributed memory systems are very

scalable and are also cheaper (because they can use

standard computers connected with a standard

network technology).
In distributed memory systems there are numerous

possibilities to connect nodes in different topologies.

Also, nodes can be in the peer-to-peer relation or can

have same hierarchy or master-slave relation.

Our model of parallelization is based on MPI

technology that is designed for distributed memory

systems (any topology), but can also be used in shared

memory systems. It can also be combined with

massive parallelism provided by GPU architecture

[11]. Although simple, a master-slave model, it is

suitable for very wide set of practical problems. In the

master-slave relation one node – the master is

coordinating node and all the others are slaves – the

nodes that do parallel calculations and report their

results to the master node.

In our model the essential module that is

automatically generated is implemented with
ExecuteInParallel() function. From a

programmer’s point of view our
ExecuteInParallel() function is a black box that

receives vector of input data and procedure to be used

on these data in parallel fashion. As an output,
ExecuteInParallel() gives a vector of results.

Abstract representation of such module is given in the

Figure 1.

Figure 1. A model of parallelization

To gain maximal speedup it is the best to use all

available nodes in the system. One node should be

dedicated to a master process, and the rest k nodes

should be assigned to k slave processes. If number of

subtasks provided by a programmer are greater than a

number of slave processes then some nodes will have

to do more than one task. The tasks are scheduled in

round robin fashion, so the slave process number i

MASTER

Results

S

L

A

V

E

...

S

L

A

V

E

S

L

A

V

E

S

L

A

V

E

Inputs Procedure

should execute tasks i, i + k, i + 2k, i + 3k, … After

the master process receives the results from all

subtasks, it provides a vector of results to a

programmer as an output (Figure 1).

4 Case Study

An aim of this work is to examine possibility of using

generative programming to hide the complexity of

using a distributed system of processors to speed up

time demanding computations. As the first steps

toward this goal is to make a case study on a simple

example. Calculating transcendental number π on

arbitrary number of significant digits is possible by

calculating partial sum of series, where partial sum

can be conveniently defined by recurrent relation (1)

�� = ���� +
����	
�

����
, ���ℎ	�� = 0 (1)

The term an represents approximation of number π/4.

For a higher value of n the approximation of number

π is more accurate. The recurrence relation (1) can

easily be implemented in a programming language,

for example as in the Code 1.

Code 1 Simple sequential code in C/C++ language

for calculating number π

double PI(long N){
 double ai = 0, sign = 1, i;
 for (i = 1 ; i <= N ; i++){
 ai += sign / (2 * i - 1);
 sign *= -1;
 }

 return ai * 4;
}

The main problem with this procedure is that, in order

to achieve high precision, it is necessary to calculate

this term in a large number of iterations. Therefore, an

available time is limiting factor to achieve high

accuracy. To maintain code simple we use double

data type, but in general abstract data types that can

store number with arbitrary precision can be used.

The first step in writing a program that can execute

this calculation in parallel is to decompose an original

task of calculating π to a number of smaller tasks.

New tasks should be able to do parts of original task

in a way that their results can easily be combined into

final solution. This decomposition can be done in

many different ways so in our opinion it is most

suitable to leave this choice to a programmer.

A complete source code of our implementation is

shown in code 2. A code on the grey background

should be written directly by the programmer and all

the rest is automatically inserted by program

generator. In our case study we divided task in a way

that smaller task calculates partial sum only for

iterations from some subinterval.

As a language of implementation a C++ was chosen

since C & C++ are regularly used for high

performance computing. To maintain code more

compact an object-oriented programming model was

used in our implementation. A class of objects named

FractionOfPi contains starting and ending iteration

as well as resulting value for a fraction of π. Besides

constructor, it implements member function

perform() that calculates a fraction of π and stores it

to the partialSum, and the member function

result() that simply retrieves calculated value.

Programmer also needs to divide task of calculating π

into smaller tasks, and to call function

ExecuteInParallel(). All the work of calculating π

is done in parallel, using nodes of a distributed

system. At the end, the partial results are store in the

vector ps. If necessary a programmer can combine

provided results in the final result, in his case simply

by summing the fraction of π. The rest of the code,

with white background, deals with technical details to

provide parallel execution and necessary

communication and synchronization between nodes.

A MasterProces() function receives the results from

tasks executed on the other nodes and also provides

synchronization by suspending the execution of

master process until all scheduled tasks are finished.

Another function, SlaveProces() execute one or

more smaller tasks and, at the end of each task, send

the results to the master process. Generator also

inserts code that maintains data about distributed

system; at the beginning initializes and at the end

releases MPI resources.

5. Usage of generator

The SCT generator model defines the source code

generator from three kinds of elements: Specification

(S), Configuration (C) and Templates (T). All three

model elements together make the SCT frame (Figure

1). The Specification contains features of generated

application in a form of attribute-value pairs. The

Template contains source code in a target

programming language together with connections

(replacing marks for insertion of variable code parts).

The Configuration defines the connection rules

between specification and template.

A starting SCT frame (Figure 2) contains the whole

specification, the whole configuration, but only the

base template from the set of all templates. Other SCT

frames are produced dynamically, one SCT frame for

each connection in upper template. SCT generator

model is generator model based on dynamic frames,

unlike some other frames-based generator models,

like XVCL [12]. Generator works as a variation

mechanism. It propagates the features specified in

Specification on a set of program fragments, named as

Templates. The connection rules are determined by

Configuration.

Code 2 A distributed implementation for calculating the number π in C++ with MPI

#include"mpi.h"
#include<vector>
#define PARTIALPIMESSAGE 531

struct MPI_related_data{
 int thisProcesID;
 int NumberOfProcesses;
} mpi_data;

class FractionOfPi{
 long long start, stop;
 double partialSum;
public:
 FractionOfPi(long long _first, long long _last):start(_first),stop(_last){}
 void perform(void);
 void result(double &sum) {sum=partialSum;}
};

void FractionOfPi::perform(void){
 double ai = 0, sign = (start%2==0)? -1 : 1;

 for (long long i = start ; i <= stop ; i++){
 ai += sign / (2 * i - 1);
 sign *= -1;
 }
 partialSum=ai * 4;
}

// #class#

void MasterProces(std::vector<double> & output){
 MPI_Status stat;
 int NumberOfSlaves = mpi_data.NumberOfProcesses - 1;
 for(int procNum = 1; procNum < mpi_data.NumberOfProcesses; procNum++)
 for(size_t i = procNum; i <= output.size(); i += NumberOfSlaves)
 MPI_Recv(&output.at(i-1), 1, MPI_DOUBLE, procNum, PARTIALPIMESSAGE, MPI_COMM_WORLD, &stat);
}
void SlaveProces(std::vector<FractionOfPi> & input){

 double r;
 int NumberOfSlaves=mpi_data.NumberOfProcesses-1;
 for(size_t i=mpi_data.thisProcesID; I <= input.size(); i += NumberOfSlaves){
 input.at(i-1).perform();
 input.at(i-1).result(r);
 MPI_Ssend(&r, 1, MPI_DOUBLE, 0, PARTIALPIMESSAGE, MPI_COMM_WORLD);
 }
}
void ExecuteInParallel(std::vector<FractionOfPi> & input, std::vector<double> & output){
 if(mpi_data.thisProcesID==0){
 output.resize(input.size());
 MasterProces(output);
 }
 else SlaveProces(input);
}
#include<iostream>
using namespace std;

int main(int argc, char **argv){
 atexit((void (*)())MPI_Finalize);
 if(MPI_Init(&argc,&argv)!=MPI_SUCCESS) exit(1);
 if(MPI_Comm_size(MPI_COMM_WORLD,&mpi_data.NumberOfProcesses)!=MPI_SUCCESS) exit(2);
 if(MPI_Comm_rank(MPI_COMM_WORLD,&mpi_data.thisProcesID)!=MPI_SUCCESS) exit(3);
 vector<FractionOfPi> pp;
 vector<double> results;
 pp.push_back(FractionOfPi(1,100000000)); // #interval# -> 1,100000000
 pp.push_back(FractionOfPi(100000001,200000000));// #interval# -> 100000001,200000000
 pp.push_back(FractionOfPi(200000001,300000000));// #interval# -> 200000001,300000000
 pp.push_back(FractionOfPi(300000001,400000000));// #interval# -> 300000001,400000000
 ExecuteInParallel(pp, results);
 if(mpi_data.thisProcesID==0){ // this block of code is executed only by master process
 double totalsum=0.0;
 for(size_t i=0; I < results.size(); i++) totalsum += results.at(i);
 cout<<"PI = "<<totalsum<<endl;
}// end of block executed only by master process

return 0;
}

Figure 2. SCT Frame

The Specification consists from attribute-values pairs

and for the given example could look as follows:

OUTPUT:out1

out1:output/parallel.cpp

class:FractionOfPi // class name

tasks:4 // number of tasks

//intervals:

interval:1,100000000

interval:100000001,200000000

interval:200000001,300000000

interval:300000001,400000000

There is one type of output specified, out1, and one

output file to be generated, output/parallel.cpp . The

output type is connected to appropriate top-level

template, which is defined in Configuration as #1#.

The Configuration connects attributes to links

(replacing marks) that are used in Templates:

//main template

#1#,,main.template

//simple connections:

#class_name#,class

#interval#,interval

// using subordinated template:

#class#,class,class.template

 . . .

Templates and their connections could be easily

represent by Configuration diagram [1], as shown in

Figure 3. The Main template contains the basic

structure of the code to be generated, including the

majority of the parallel resources. Triangles represent

replacing marks i.e. parts of the code to be defined

during the generation process. Rounded rectangles

represent values from Specification.

This architecture of generator offers a lot of flexibility

into design of parallel systems. All three model

elements (Specification, Configuration and

Templates) could be easily extended enabling

adaptation of generator system to the needs of parallel

processing.

Figure 3. Configuration diagram of the example

6 Conclusion

Our research shows that using generative

programming can hide technical peculiarities and

complexity from programmer and yet provide it with

ability to use distributed system to speed up

computationally demanding calculations. By

employing distributed system this method has very

high scalability.

Although, this model is developed on a simple case

study it seems general enough to handle a whole class

of practical problems. In future work we are planning

to extend our model so it can handle more general

cases and possibly to offer some alternative modes

and network topologies through our program

generator.

References

[1] Radošević D., Magdalenić I., “Source Code

Generator Based on Dynamic Frames”, Journal

of Information and Organizational Sciences, vol.

35, no. 2, pp. 73–91, 2011.

[2] Griss M. L. Product line architectures. In G. T.

Heineman, & W. T. Councill (Eds.), Component-

based software engineering: Putting the pieces

together (pp. 405-420). Boston: Addison-Wesley.

[3] Grigorenko P., Saabas A., Tyugu E. Visual Tool

for Generative Programming. Proc. of the Joint

10th European Software Engineering

Conference (ESEC) and the 13th ACM

SIGSOFT Symposium on the Foundations of

Software Engineering (FSE-13). ACM Publ.,

pp. 249–252, 2005.

[4] Tolvanen J.P., Rossi M. Metaedit+: Defining and

using domain-specific modeling languages and

code generators. In OOPSLA 2003

demonstration, 2003.

[5] Ekanayake J., Qiu X., Gunarathne T., Beason S.,

Fox G. High Performance Parallel Computing

with Cloud and Cloud Technologies. Cloud

Computing and Software Services: Theory and

Techniques, CRC Press (Taylor and Francis), pp.

1-39, 2010.

 [6] M. Waintraub, R. Schirru, C.M.N.A. Pereira:

Multiprocessor modeling of parallel Particle

Swarm Optimization applied to nuclear

engineering problems. Progress in Nuclear

Energy, 51(6–7): 680-688, 2009.[8] M.

Pedemonte, S. Nesmachnow, H. Cancela: A

survey on parallel ant colony optimization.

Applied Soft Computing, 11(8): 5181-5197, 2011.

[7] O. Nesterov: A simple parallelization technique

with MPI for ocean circulation models. Journal

of Parallel and Distributed Computing, 70(1):

35-44, 2010.

[8] M. Chau, D. El Baz, R. Guivarch, P. Spiteri: MPI

implementation of parallel subdomain methods

for linear and nonlinear convection–diffusion

problems. Journal of Parallel and Distributed

Computing, 67(5): 581-591, 2007.

[9] J. Zhao: IB: A Monte Carlo simulation tool for

neutron scattering instrument design under PVM

and MPI. Nuclear Instruments and Methods in

Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated

Equipment, 659(1): 434-441, 2011.

[10] D. Komatitsch, G. Erlebacher, D. Göddeke, D.

Michéa: High-order finite-element seismic wave

propagation modeling with MPI on a large GPU

cluster. Journal of Computational Physics,

229(20): 7692-7714, 2010.

[11] C. S. Ierotheou, S. P. Johnson, M. Cross, P. F.

Leggett: Computer Aided Parallelisation Tools

(CAPTools) - Conceptual Overview and

Performance on the Parallelisation of Structured

Mesh Codes. Parallel Computing, 22(2): 163-

195, 1996.

[12] Zhang H., Jarzabek S., “XVCL: a mechanism for

handling variants in software product lines”,

Science of Computer Programming, 53(3): 381-

407, 2004.

