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Abstract. Although there are various parallel 

programming models introduced and supported 

by different communication protocols, the 

building of parallel applications is still a kind of 

handwork. This paper deals with opportunity of 

usage Generative Programming techniques in 

parallelization of program functions written in a 

standard, non-parallel manner. Particularly, the 

usage of SCT generator model is discussed 

within generation of parallel programs based on 

the MPI communications protocol. An example 

of such generator was developed and tested. 
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1 Introduction 
 

Various optimization problems, simulation and 

scientific calculations are often time-consuming and 

require computers with powerful and expensive 

hardware. Often, the computing problems can be 

decomposed into several subtasks that can run 

simultaneously on multiple computers. Parallel 

execution of programs enables their execution faster 

and such implementations are cheaper. But the 

parallel program execution brings new problems. All 

tasks cannot be parallelized. It is difficult to create 

and synchronize tasks and it is hard to discover bugs 

in programs. These are some of the obstacles in use of 

parallel programs. 

This paper deals with opportunity of using 

Generative Programming techniques in parallelization 

of program functions written in a standard, non-

parallel manner. There are a lot of generative 

programming techniques, and we decided to apply the 

already proven SCT model of source code generator 

[1]. By using generative programming techniques, we 

want to hide the complexity of constructing parallel 

programs that can run on multiple computers using 

the MPI protocol.  

The basic idea of our solution is as follows. A 

programmer divides the problem into subtasks that 

can run in parallel. Our system generates needed 

source code that enables parallel execution. The 

programmer executes the program on multiple 

computers. The programmer does not need to have the 

knowledge of parallel programming techniques. 

Issues addressed in our solution are creation and 

scheduling of tasks on multiple computers, their 

mutual communication and results collection. This is 

the first step toward building of such a system and the 

proposed solution is not complete. For example, a 

problem of possible various data type is not covered 

in this paper.  

The paper is organized as follows: a background 

to the research is given in section 2. A model of 

parallelization is presented in section 3 which is 

followed by a case study described in section 4. The 

short description of SCT source code generator model 

is presented in section 5 followed by description of 

generator implementation. The conclusion is given in 

section 6.  

 

2 Backgrounds to the Research 
 

Because of all the hardness of parallel 

programming, for a long time researchers are trying to 

resolve a problem of automated parallelization. At 

this point, a complete automation of code 

parallelization at the compiler level seems to be 

unachievable goal. Currently there are only partial 

solutions. One is automatic parallelization of 

sequential code that can produce parallel code in 

some special cases. The rest of the code that could be 

parallelized is left sequential due to imperfection of 

current methods and tools. For a single multiprocessor 



machine this can be achieved purely on compiler 

level. For a system of processors that communicate 

over network some standardized protocol for 

exchanging data has to be supplemented, usually with 

additional libraries.  

Another approach is to relay on human 

intervention, but also to provide substantial help for 

creating parallel programs. We use this second 

approach by using SCT source code generator model 

[1] for the generation of the needed source code. The 

SCT model is designed to work with code-fragment-

sized components. The same approach is used in [2]. 

Our components are not necessarily strictly connected 

to program organizational units, like classes or 

methods.  Consequently, our approach differs from 

the metaclass-based approaches, as described by 

Grigorenko et al. [3] and Tolvanen and Rossi [4].  

Our implementation uses Message Passing 

Interface (MPI) that has become de facto standard for 

distributed system application. The MPI is a 

language-independent communications protocol that 

uses a message-passing paradigm to share data and 

states among a set of cooperative processes running 

on a distributed memory system [5]. MPI 

specification (Forum, MPI) defines a set of routines to 

support various parallel programming models such as 

point-to-point communication, collective 

communication, derived data types, and parallel I/O 

operations [5]. It is widely used in versatile 

distributed systems for solving challenging 

computational problems [6, 7,8, 9, 10]. 

 

3 A model of parallelization 
 

To utilize a parallel architecture, a computational 

task has to be disassembled to a set of smaller 

subtasks that can be executed in parallel. There are 

different paradigms of parallel execution, but multiple 

instructions – multiple data streams (MIMD) 

architecture is the most general and most useable in 

practice.  

In principal MIMD system can be implemented as 

shared memory or distributed memory system. A 

shared memory system consists from tightly coupled 

processor cores that have direct access to a pool of 

memory called shared memory. A distributed memory 

system is made from independent processing nodes 

that communicate using network. 

In generally it is easier to write programs for a 

shared memory system then for a distributed memory 

system, since reading and writing memory doesn’t 

need special mechanicals for communication. 

Nevertheless, an appropriate synchronization for 

writing memory is inevitable to ensure correct 

execution. Another advantage of a shared memory 

system is a fast access to the shared memory, while 

nodes in a distributed memory system have to 

exchange messages to communicate (which usually 

takes mach more time). Time to exchange a message 

is more critical in the distributed memory system 

called grid. In a grid nodes are usually geographically 

distant and have network connections of lower speed, 

then in the distributed memory system called cluster, 

where nodes are connected with a high speed LAN 

network. In contrast to shared memory systems that 

are less scalable and have to be specially 

manufactured, distributed memory systems are very 

scalable and are also cheaper (because they can use 

standard computers connected with a standard 

network technology). 
In distributed memory systems there are numerous 

possibilities to connect nodes in different topologies. 

Also, nodes can be in the peer-to-peer relation or can 

have same hierarchy or master-slave relation. 

Our model of parallelization is based on MPI 

technology that is designed for distributed memory 

systems (any topology), but can also be used in shared 

memory systems. It can also be combined with 

massive parallelism provided by GPU architecture 

[11]. Although simple, a master-slave model, it is 

suitable for very wide set of practical problems. In the 

master-slave relation one node – the master is 

coordinating node and all the others are slaves – the 

nodes that do parallel calculations and report their 

results to the master node. 

In our model the essential module that is 

automatically generated is implemented with 
ExecuteInParallel() function. From a 

programmer’s point of view our 
ExecuteInParallel() function is a black box that 

receives vector of input data and procedure to be used 

on these data in parallel fashion. As an output, 
ExecuteInParallel() gives a vector of results. 

Abstract representation of such module is given in the 

Figure 1.  

 
Figure 1. A model of parallelization 

 

To gain maximal speedup it is the best to use all 

available nodes in the system. One node should be 

dedicated to a master process, and the rest k nodes 

should be assigned to k slave processes. If number of 

subtasks provided by a programmer are greater than a 

number of slave processes then some nodes will have 

to do more than one task. The tasks are scheduled in 

round robin fashion, so the slave process number i 
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should execute tasks i, i + k, i + 2k,  i + 3k, … After 

the master process receives the results from all 

subtasks, it provides a vector of results to a 

programmer as an output (Figure 1). 

 

4 Case Study 
 

An aim of this work is to examine possibility of using 

generative programming to hide the complexity of 

using a distributed system of processors to speed up 

time demanding computations. As the first steps 

toward this goal is to make a case study on a simple 

example. Calculating transcendental number π on 

arbitrary number of significant digits is possible by 

calculating partial sum of series, where partial sum 

can be conveniently defined by recurrent relation (1) 
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The term an represents approximation of number π/4. 

For a higher value of n the approximation of number 

π is more accurate. The recurrence relation (1) can 

easily be implemented in a programming language, 

for example as in the Code 1. 

 

Code 1 Simple sequential code in C/C++ language 

for calculating number π 

double PI(long N){ 
  double ai  = 0, sign = 1, i; 
  for (i = 1 ; i <= N ; i++){ 
    ai += sign / (2 * i - 1); 
    sign *= -1; 
  } 

  return ai * 4;   
} 

 
The main problem with this procedure is that, in order 

to achieve high precision, it is necessary to calculate 

this term in a large number of iterations. Therefore, an 

available time is limiting factor to achieve high 

accuracy. To maintain code simple we use double 

data type, but in general abstract data types that can 

store number with arbitrary precision can be used. 

The first step in writing a program that can execute 

this calculation in parallel is to decompose an original 

task of calculating π to a number of smaller tasks. 

New tasks should be able to do parts of original task 

in a way that their results can easily be combined into 

final solution. This decomposition can be done in 

many different ways so in our opinion it is most 

suitable to leave this choice to a programmer.  

A complete source code of our implementation is 

shown in code 2. A code on the grey background 

should be written directly by the programmer and all 

the rest is automatically inserted by program 

generator. In our case study we divided task in a way 

that smaller task calculates partial sum only for 

iterations from some subinterval.  

As a language of implementation a C++ was chosen 

since C & C++ are regularly used for high 

performance computing. To maintain code more 

compact an object-oriented programming model was 

used in our implementation. A class of objects named 

FractionOfPi contains starting and ending iteration 

as well as resulting value for a fraction of π. Besides 

constructor, it implements member function 

perform() that calculates a fraction of π and stores it 

to the partialSum, and the member function 

result() that simply retrieves calculated value. 

Programmer also needs to divide task of calculating π 

into smaller tasks, and to call function 

ExecuteInParallel(). All the work of calculating π 

is done in parallel, using nodes of a distributed 

system. At the end, the partial results are store in the 

vector ps. If necessary a programmer can combine 

provided results in the final result, in his case simply 

by summing the fraction of π. The rest of the code, 

with white background, deals with technical details to 

provide parallel execution and necessary 

communication and synchronization between nodes. 

A MasterProces() function receives the results from 

tasks executed on the other nodes and also provides 

synchronization by suspending the execution of 

master process until all scheduled tasks are finished. 

Another function, SlaveProces() execute one or 

more smaller tasks and, at the end of each task, send 

the results to the master process. Generator also 

inserts code that maintains data about distributed 

system; at the beginning initializes and at the end 

releases MPI resources. 

 

5. Usage of generator 
 

The SCT generator model defines the source code 

generator from three kinds of elements: Specification 

(S), Configuration (C) and Templates (T). All three 

model elements together make the SCT frame (Figure 

1). The Specification contains features of generated 

application in a form of attribute-value pairs. The 

Template contains source code in a target 

programming language together with connections 

(replacing marks for insertion of variable code parts). 

The Configuration defines the connection rules 

between specification and template. 

A starting SCT frame (Figure 2) contains the whole 

specification, the whole configuration, but only the 

base template from the set of all templates. Other SCT 

frames are produced dynamically, one SCT frame for 

each connection in upper template. SCT generator 

model is generator model based on dynamic frames, 

unlike some other frames-based generator models, 

like XVCL [12]. Generator works as a variation 

mechanism. It propagates the features specified in 

Specification on a set of program fragments, named as 

Templates. The connection rules are determined by 

Configuration. 
 

 



Code 2 A distributed implementation for calculating the number π in C++  with MPI 

#include"mpi.h" 
#include<vector> 
#define PARTIALPIMESSAGE 531 
 
struct MPI_related_data{ 
  int thisProcesID; 
  int NumberOfProcesses; 
} mpi_data; 
 

class FractionOfPi{ 
  long long start, stop; 
  double partialSum; 
public: 
  FractionOfPi(long long _first, long long _last):start(_first),stop(_last){} 
  void perform(void); 
  void result(double &sum) {sum=partialSum;} 
}; 
 

void FractionOfPi::perform(void){ 
  double ai  = 0, sign = (start%2==0)? -1 : 1; 
   
  for (long long i = start ; i <= stop ; i++){ 
    ai += sign / (2 * i - 1); 
    sign *= -1; 
  } 
  partialSum=ai * 4; 
} 

 
 
 
 
 
 
 
 
// #class#  

void MasterProces(std::vector<double> & output){ 
  MPI_Status stat; 
  int NumberOfSlaves = mpi_data.NumberOfProcesses - 1; 
  for(int procNum = 1; procNum < mpi_data.NumberOfProcesses; procNum++) 
    for(size_t i = procNum; i <= output.size(); i += NumberOfSlaves) 
      MPI_Recv(&output.at(i-1), 1, MPI_DOUBLE, procNum, PARTIALPIMESSAGE, MPI_COMM_WORLD, &stat); 
} 
void SlaveProces(std::vector<FractionOfPi> & input){ 

  double r; 
  int NumberOfSlaves=mpi_data.NumberOfProcesses-1; 
  for(size_t i=mpi_data.thisProcesID; I <= input.size(); i += NumberOfSlaves){ 
    input.at(i-1).perform(); 
    input.at(i-1).result(r); 
    MPI_Ssend(&r, 1, MPI_DOUBLE, 0, PARTIALPIMESSAGE, MPI_COMM_WORLD); 
  } 
} 
void ExecuteInParallel(std::vector<FractionOfPi> & input, std::vector<double> & output){ 
  if(mpi_data.thisProcesID==0){ 
    output.resize(input.size()); 
    MasterProces(output); 
  } 
  else  SlaveProces(input); 
} 
#include<iostream> 
using namespace std; 

int main(int argc, char **argv){ 
     atexit((void (*)())MPI_Finalize);     
  if(MPI_Init(&argc,&argv)!=MPI_SUCCESS) exit(1); 
  if(MPI_Comm_size(MPI_COMM_WORLD,&mpi_data.NumberOfProcesses)!=MPI_SUCCESS) exit(2); 
  if(MPI_Comm_rank(MPI_COMM_WORLD,&mpi_data.thisProcesID)!=MPI_SUCCESS) exit(3); 
  vector<FractionOfPi> pp; 
  vector<double> results; 
  pp.push_back(FractionOfPi(1,100000000));        // #interval# -> 1,100000000  
  pp.push_back(FractionOfPi(100000001,200000000));// #interval# -> 100000001,200000000 
  pp.push_back(FractionOfPi(200000001,300000000));// #interval# -> 200000001,300000000 
  pp.push_back(FractionOfPi(300000001,400000000));// #interval# -> 300000001,400000000 
  ExecuteInParallel(pp, results); 
  if(mpi_data.thisProcesID==0){ // this block of code is executed only by master process 
   double totalsum=0.0; 
   for(size_t i=0; I < results.size(); i++) totalsum += results.at(i); 
   cout<<"PI = "<<totalsum<<endl; 
}// end of block executed only by master process 

return 0; 
} 



 

 

 
 

Figure 2. SCT Frame 

 

The Specification consists from attribute-values pairs 

and for the given example could look as follows: 

 
OUTPUT:out1 

 

out1:output/parallel.cpp 

 

class:FractionOfPi // class name 

tasks:4  // number of tasks 

//intervals: 

interval:1,100000000 

interval:100000001,200000000 

interval:200000001,300000000 

interval:300000001,400000000 

 
There is one type of output specified, out1, and one 

output file to be generated, output/parallel.cpp . The 

output type is connected to appropriate top-level 

template, which is defined in Configuration as #1#. 

The Configuration connects attributes to links 

(replacing marks) that are used in Templates: 

 
//main template 

#1#,,main.template 

 
//simple connections: 

#class_name#,class 

#interval#,interval 

 

// using subordinated template: 

#class#,class,class.template 

 . . . 

 

Templates and their connections could be easily 

represent by Configuration diagram [1], as shown in 

Figure 3. The Main template contains the basic 

structure of the code to be generated, including the 

majority of the parallel resources. Triangles represent 

replacing marks i.e. parts of the code to be defined 

during the generation process. Rounded rectangles 

represent values from Specification. 

This architecture of generator offers a lot of flexibility 

into design of parallel systems. All three model 

elements (Specification, Configuration and 

Templates) could be easily extended enabling 

adaptation of generator system to the needs of parallel 

processing. 

 

 
 

Figure 3. Configuration diagram of the example 

 
 

6 Conclusion 
 

Our research shows that using generative 

programming can hide technical peculiarities and 

complexity from programmer and yet provide it with 

ability to use distributed system to speed up 

computationally demanding calculations. By 

employing distributed system this method has very 

high scalability.  

Although, this model is developed on a simple case 

study it seems general enough to handle a whole class 

of practical problems.  In future work we are planning 

to extend our model so it can handle more general 

cases and possibly to offer some alternative modes 

and network topologies through our program 

generator. 
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