

Generating Web Applications Using CodeWorker

Josip Mlakar, Danijel Radošević, Ivan Magdalenić

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

{josip.mlakar, danijel.radosevic, ivan.magdalenic}@foi.hr

Abstract. Generative programming as a discipline of

Automatic programming uses different approaches

and tools in building of generators and associated

applications. CodeWorker enables possibility to

define program specification by using Extended BNF

notation. This approach was described in the paper

and compared to some others, including Open

Promol, XVCL, GenVoca and SCT. An example of

Web application was given showing the advantages

and drawbacks of this approach in building of Web

applications.

Keywords. CodeWorker, generative programming,

code generators

1 Introduction

Generative programming [1] is a programming

approach focused on automation of application

development process. Key for the automation of a

software development is a generative domain model

which consists of the problem space, the solution

space and the configuration knowledge which maps

between them [1]. The solution space consists of the

implementation components and their combinations.

The implementation components should be designed

in a way so they maximize their combination capacity

and reusability while minimizing redundancy of a

code. The problem space consists of the concepts and

domain specifics features. The problem space defines

Domain-Specific Language (DSL) [12], while

configuration knowledge defines feature

combinations, default settings, default dependencies

and construction rules [12].

Most of the methods for an object oriented

analysis and design are focused on a development of

software individually [2]. Biggest flaws of those

methods are that they don't recognize the difference

between the development for reuse and the

development with reuse [2].

Focus of this paper will be on one of the tools

devoted to generative programming, CodeWorker [7].

Using the example of a web application generator it

will demonstrated the process of developing

generators using CodeWorker and the benefits of the

generative approach in general. Also there will be

given a quick overview of some other tools devoted to

generative programming and their comparison to

CodeWorker.

2 Background of the research

Besides generative programming there are other

popular approaches to modern day software

development. Some of them will be described in the

following sections.

Object-oriented programming (OOP) is currently

the most dominating programming approach. OOP

reflects the structure of the application domain with

the programming structure. The two core terms of

OOP are object and class. While class presents the

type which describes data and operations for

processing data, object presents an instance of the

class. OOP contains some characteristics important

for creating reusable components like polymorphism,

encapsulation and class inheritance [6]. While OOP

provides a way to create reusable components in a

sense of a frameworks it does not provide a way to

automate creation of meaningful application or

system from those components. Wanted components

must be connected manually by a programmer. But

before that, programmer has to learn how to use the

framework which can be very costly and time

consuming.

Some of the programming problems can't be

adequately described with OOP techniques. Aspect-

oriented programming (AOP) extends OOP paradigm

by adding the aspects. Aspects are described as

properties of the system that spans trough different

parts of the source code [14]. AOP enables splitting of

each aspect and describing aspects in their natural

form. Most of the currently popular programming

languages provide a way to describe some of the

aspects. Aspect oriented languages are mostly the

extensions of already existing languages so there are

AspectC++ which is the extension for C++ and

AspectJ which is the extension for Java programming

language.

 Metaprogramming is a process of specifying

generic software templates which can be used for an

automated generation of new software components

[13]. Those software templates are called

metaprograms. Metaprogramming usually involves

generative programming techniques but it doesn't

always have to be the case. In example

metaprogramming can be used for programs that are

modified during runtime. In that case there is no code

generation and there is no need for generative

programming techniques.

Generic programming [4] focuses on finding

similarities between similar implementations of the

same algorithm. Main process of generic

programming is called lifting [5]. Algorithms are

lifted until they reach suitable level of abstraction,

which maximize the algorithm reusability. When

lifting is done it's easy to find patterns between

requests. It's a common thing to find the same set of
requests between different algorithms. Those sets are

then grouped into concepts. Concepts describe a set of

abstractions in which every abstraction meets all the

requests of the certain concept. Difference between

generative and generic programming is that

generative programming focuses on creating

generators that can provide solution for every distinct

problem inside certain domain while generic

programming focuses on implementing algorithms

that can work in every distinct problem inside

domain. Generative programming results with tailored

solution for each domain problem, while generic

programming results with a generic solution that

solves all possible domain problems.

Domain engineering is a process of active

colleting, organizing and storing past experiences in

system or component development of a certain

domain in a way that provides reusable means for

future projects [12]. There are three phases of domain

engineering [3][12]. Domain analysis is the first

phase. In this phase domain focus is determined and

all important domain information are collected and

integrated into coherent domain model. Second phase

is domain design in which architecture family of the

system is developed and development plan of a

system is determined. Architecture family [3][12]

represents the systems that have common properties

but there are still some properties that different one

system from another. Third and the final phase is

domain implementation in which architecture,

components and plan of production are implemented.

This paper focuses on creating application

generators in a CodeWorker, but to get a wider

picture about tools devoted to generative

programming there will be briefly described some

other tools that serve the same purpose. Those tools

are Open PROMOL, XVCL, GenVoca and SCT.

2.1 Open Promol
Open PROgram MOdification Language (Open

PROMOL) is a script language for specifying

modifications of application written in arbitrary

programming language [11]. It allows application

modifications using the process of gluing. Gluing is a

process of inserting data or components in wanted

part of a source code. There are two types of gluing.

First type is outside gluing which is used for creating

composition structure of more different and mutually

independent components. Second type is inside

gluing. It's is used for development of monolith

components.

2.2 XVCL
XML-based Variant Configuration Language (XVCL)

is script language for configuring and managing

variants in programs and other kinds of documents

[15]. Variants can be described as differences

between system requests that belong to the same

domain. Automating variant management reduces the

risk of errors in applications which makes

development of domain specific applications cheaper

and less time consuming. Software Product Line

(SPL) is achieved with that process of automation.

Software Product Line (SPL) or Product Family (PF)

is a group of software intensive systems that share a

common set of features that meet particular

stakeholders' specific needs [10].

To accomplish that XVCL separates generic and

adjustable fragments into x-frames. Those frames are
organized into hierarchy which makes architecture of

the software product line. XVCL processor is going

through x-frame architecture executing commands

defined in each frame. In that process every x-frame

adjusts his sub-frame creating unique system that

meets all domain and system specific requests.

2.3 GenVoca
GenVoca is a composition model that uses component

to define scalable hierarchy system families [1].

GenVoca speaks in favor of layer decomposition of

implementation. Layer decomposition implies

decomposition of the system on components so that

every component is made only of primitive domain

features. Since those components are very small their

reusability capacity is relatively big. Software system

hierarchy is defined with the series of progressively

abstract virtual machines. Component is an

implementation of a virtual machine while realm is

components cluster. Realms and their components

define a grammar whose sentences are software

system. As set of sentences define language so set of

compositions defines system family [1].

2.4 SCT
Specification-Configuration-Templates (SCT) [9] is

generator model that is based on dynamic frames.

Every frame consists of specification, configuration

and template.

 Specification defines features of a generated

application. Generator generates source code by

merging features with template in designated spots.

Besides defining features of generated applications,

specification also defines place where generated

source code should be generated. Specification

consists of attribute-value pairs which are organized

in hierarchy order. A value of the attributes presents

features of a generated application.

Configuration consists of configuration rules that

define the connection between specification and

template. Configuration rule is made of connection,

source and code template. Connections mark spots

where content from specification should be put. Every

connection has a source that is defined in a

specification. Source of a connection is a value of an

attribute that has the same name as the name of a

connection. Code template is the fragment of a code

that contains connections.

The process of source code generation starts with

the initial SCT frame that contains the complete

Specification and Configuration and only one

template from the set of all Templates. Other SCT

frames are produced dynamically for each connection

in the template, forming a generation tree [8] (Fig. 1).

S C

T
(code +

connections)

S C T S C T S C T

.

.

S C TS C T S C T

Fig. 1. Generation tree

3 CodeWorker

CodeWorker [7] is a parsing and code generation tool.

It supports three ways of code generation which can

all be combined into the same application generator.

First way is called generation mode. Generation

mode consists of four steps (Fig. 2). First step is to

create a specification, second to write parsing script

which parse specification and populates parsing tree,

third to write templates and fourth step which is

optional is to write leader scripts which call all the

commands for parsing and code generation.

Second way is called expansion mode. Expansion

mode is used for expanding already generated or by

hand written file. It allows inserting small portions of

a code into existing file. Points where those portions

should be inserted are marked with a ##markup## and

wanted identifier name.

Third and the last way is called translation mode.

Translation mode is used when file must be rewritten

in different syntax (source-to-source translation) or

when source file has to change for optimizing,

refactoring, rewriting some portions.

All data that wants to be inserted into templates,

thus creating specific features of an application,

should be fed into data structure called parse tree (root

of a parse tree is called project). Specification is an

abstraction of the tree structure so it can be said that

specification explicitly describes features of a

generated file.

Since specification can be written in arbitrary

syntax, it's required to write scripts to parse

specification and populate parse tree with specified

data. Those scripts are called parse scripts and

CodeWorker provides two methods to write them,

declarative and procedural. Declarative method

implies on using Extended Backus-Naur Form

(EBNF) to write the parse scripts while procedural

method implies using CodeWorker script language.

Procedural method is the older way to write scripts

and it's faster than declarative method but it's not so
flexible. Because of that CodeWorker authors finds

that method obsolete. It's also worth mentioning that

CodeWorker script language can be used in EBNF

scripts if there is need but it should be announced

with characters "=>" and end with character ";".

Templates are skeletons of generated code. They

are written with combination of a targeted

programming language and CodeWorker script

language. CodeWorker script language in a template

should be marked with character "@" at the start and

the end of an instructions or with characters "<%" at

the start and "%>" at the end of instructions. Script

language is used for specifying where and what data

from the parse tree should be inserted into output file.

Leader scripts are used to execute all the

commands for parsing and generating applications.

They are not necessary in development of application

generators but they automate the process of code

generation even more.

Fig. 2. CodeWorker generation process

4 An example

Simple web application generator

1
 was created to

show the capabilities and benefits of using

CodeWorker and generative approach in general.

Even the smallest change in database can cause

big problems in adopting the software to the new

structure. It often requires changes in more than one

script or class which can, depending on a size of a

project, require a lot of time and concentration to do it

right without creating more problems and errors.

In this section it is described how to address this

issue with a generative approach. First step is to

define the problem space. Problem space for this

specific example is a cash registers application

domain. To make the focus primarily on usage of

generative approach and process of developing

application generators using CodeWorker example

used in this paper is fairly simple. Data model of all

generated applications consists of four tables, table

with data about users (workers in a store), table with

data about products, table with data about orders and

table with data about order items. Every generated

application should use that database model, but names

of tables including names, types and number of

attributes are completely arbitrary.

Content and structure inside the tables, including

some user interface properties like title, organization

and number of navigation items are variants of

distinct applications inside chosen domain. Those

variants are all defined in the specification and

depending on specification content all scripts (PHP is

used in this example) are generated according to that

content. With this approach whenever change is made

in a database, only adjustments that have to made are

in a specification, generator does all other work (i.e.

generates all the scripts according to those changes).

Configuration knowledge of a generator consists

of a leader script, specification, parse script and parts

of a template written in a CodeWorker script

language, while solution space consists of templates

as a whole. Parts of a configuration knowledge and

solution space will be further explained in the

following passages.

Leader script (leader_script.cws) calls set of

commands required for a generation process on a

CodeWorker processor. This script is called directly

from a CodeWorker command line with a command -

script. Command parseAsBNF reads the specification

(specification.tml) and using parse script (parse.cwp)

extracts data and populates the parse tree. Command

generate generates source code (index.php,

getOrder.php, etc.) by combining templates

(index.tml, getOrder.tml, etc.) with an appropriate

data from the parse tree (Fig 3.).

1
 Example of generated web application is available at

http://gpml.foi.hr/php_codeworker

Fig. 3. Web application generator

In example specification is written in a new

syntax, created specifically for the purpose of an

example. Character "D" defines the data about

database. First block contains attributes for database

connection (server, database name, user and

password).

D

{

 server localhost

 database shopDB

 username root

 password pass

}

 Second block is actually an array of blocks

containing the data about structure of each table. Each

table block starts with a character "T" and follows up

with a name of a table in a database. In each table

block there is a special attribute "P" which stands for

a purpose of that specific table (whether is a table that

contains data for users, products, order or order

items). That attribute should not be changed, it tells

the CodeWorker processor for what is each block

precisely meant. Other attributes in table block

present each of the attribute in a database table. Every

attribute can have some of the special properties.

Those properties are defined with special characters:

"A" property can have values "pk" (attribute is

primary key), "table_vk" (attribute is a foreign key for

an attribute of a same name in a table which name is

written before "_vk")," username" (this attribute is for

username), "password" (it is for password); "N"

property should be followed with "yes" and it tells

processor that this attribute presents name of a
product, employee...; "R" property should be followed

with "yes" and it tells the processor that this attribute

value should be shown in receipt; "H" property should

be followed with "yes" and it tells the processor that

this attribute value should be shown on purchase

history; "-" property should be followed with "yes"

and it tells the processor that this attribute represents

number of products in stock; "+" property should be

followed with "yes" and it tells the processor that this

attribute value should be accounted into receipt.

[

 T products

 {

 P products

 product_id A pk R yes

 product_name N yes R yes

 price R yes + yes

 warehouse_state - yes

 }

...]

Character "S" defines the block of data about user

interface. "N" is followed with the title of the

generated app. Other attributes are for defining

navigation bar. Every element is followed with

character "L" and the link to the page it should lead. If

element consists of more than one word those words

should be separated with underscore.

S

{

 N Custom_shop

 Cashier L index.php

 Order_history L order_history.php

 Sign_out L signout.php

}

Character "G" defines block with data where each

script should be generated and which branch of a

parse tree should be used in process.

D

{

 index.cwt project.table path/index.php

 ...

 getItem.cwt project.table path/getItem.php

}

Declarative method for creating parsing scripts is

used for parsing specification. Using the EBNF,

parsing script goes trough specification while

extracting data. Those extracted data is inserted into

parse tree using CodeWorker scripting language.

Leader script makes sure all the necessary actions

are executed. It firstly parses the specification into

parse tree and then generates final scripts from

templates.

parseAsBNF("parser.cwp",project,"skripte/specifi

cation.tml");

foreach i in project.files

{

 if(i.cnode=="project.db")

 {

 generate (i.cwt,project.db,i.out);

 }

 else if (i.node=="project.table")

 {

 generate(i.cwt,project.table,i.out);

 }

 else

 {

 generate (i.cwt, project, i.out);

 }

}

Templates consists of PHP code and CodeWorker

scripting language which make sure right data from

the parse tree is inserted into right place. In a

generated code scripting language is replaced with

those data (Fig. 3).

Fig. 3. Generation process

5 Conclusions

This paper describes development process of

application generator using CodeWorker and

generative approach. It was also given a preview of

other tools devoted to generative programming.

CodeWorker enables writing specification of a

generator in the custom syntax which adds to

flexibility compared to other tools described in this

paper. Writing specification in custom syntax means

that syntax can be fully adjusted to domain that

generator is developed for. But this flexibility also

has its drawbacks since allowing so much freedom

opens more space for errors. It also makes process of

development longer since this approach requires

writing parsing scripts for specifications.

Generative approach in software engineering

focuses on creating generator that satisfies variants

inside problem domain. Creating application

generators takes more time then to make application

in a classic way so generative approach is not cost

effective in a short term. Nevertheless application

created just for one system can be used only in that

one system, while application generator (once

developed) can generate applications that fit the
requests of each system inside problem domain. So

with each generated application, cost effectiveness

rises and overcomes the classical approach.

Software systems are growing larger and more

complex so there is a great need for automation of as

much software development process as possible.

Usage of generators can be seen in most modern

integrated development environment as they generate

class skeletons and other generic parts of an

application.

In our further research we will focus on studying

other advanced programming techniques which are

expected to dominate in the future where most of

software development process will be automated.

References

[1] Blair, J., Batory, D. A Comparison of Generative

Approaches: XVCL and GenVoca. Technical

report, The University of Texas at Austin,

Department of Computer Sciences, December

2004.

[2] Czarnecki, K., Eisenecker, U. Components and

Generative Programming. ACM SIGSOFT

Software Engineering Notes, vol. 24, no. 6, pp. 2-

19, 1999.

[3] Czarnecki K,. Eisenecker, U.W. Generative

Programming: Methods, Techniques, and

Applications. Addison-Wesley, 2000.

[4] Garcia R., Jarvi J., Lumsdaine A., Siek J. and

Willcock J. "An extended comparative study of

language support for generic programming",

Journal of Functional Programming, 17, pp 145-

205.,Cambridge University Press, 2007.

[5] Gregor D., Järvi J., Siek J., Stroustrup B., Dos

Reis G., Lumsdaine A. "Concepts: Linguistic

Support for Generic Programming in C++",

Proceedings of the 21st annual ACM SIGPLAN

conference on Object-oriented programming

systems, languages, and applications, OOPSLA

2006, Pg. 291-310, Portland, USA

[6] Guerraoui R.: "Strategic directions in object-

oriented programming", ACM Computing

Surveys, Baltimore, december 1996.

[7] Lemaire, C. “CODEWORKER Parsing tool and

Code generator - User’s guide & Reference

manual,”

http://codeworker.free.fr/CodeWorker.pdf, 2010.

[8] Magdalenić, D. Radošević, and T. Orehovački,

"Autogenerator: generation and execution of

programming code on demand" Expert Systems

with Applications, vol. 40, no. 8, pp. 2845–2857,

2013.

[9] Radošević D., and Magdalenić I. Source Code

Generator Based on Dynamic Frames, Journal of

Information and Organizational Sciences, vol. 35,

no. 2, pp. 73–91, 2011.

[10] Roško, Z. "Predicting the Changeability of

Software Product Lines for Business

Application", 23rd International Conference on

Information Systems (ISD 2014), Varaždin,

Croatia, 2014.

[11] Štuikys, V., Damaševičius, R., Ziberkas, G.:

"Open PROMOL: An Experimental Language for

Target Program Modification", Software

Engineering Department, Kaunas University of

Technology, Kaunas, Lithuania, 2001.,

[12] Tolvanen J.P., Rossi M. Metaedit+: Defining and

using domain-specific modeling languages and

code generators. In OOPSLA 2003

demonstration, 2003.

[13] Trujillo S., Azanza M., Diaz O. Generative

metaprogramming. GPCE '07: Proceedings of the

6th international conference on Generative

programming and component engineering,

October 2007.

[14] Yi S., He C., "A Comparison of Approaches

Toward Reusable Aspects", International

Conference on Computer Science and Intelligent

Communication (CSIC 2015), Zhengzhou, China,

2015.

[15] Zhang H., Jarzabek S. XVCL: a mechanism for

handling variants in software product lines,

Science of Computer Programming, Volume 53,

Issue 3 (December 2004) Pages: 381 – 407

