

Web form generators design model
Daniel Strmečki, Danijel Radošević, Ivan Magdalenić

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

{daniel.strmecki, danijel.radosevic, ivan.magdalenic}@foi.hr

Abstract.

This paper presents a design model for the

development of Web form generators. The

proposed model is highly modular and tends to

make use of generative programming techniques

and the available Web components to enable

code generation (both GUI and GPL code). The

design model is presented from the user's angle

(frontend) and the developer’s angle (backend).

An UML class diagram of the design solution is

presented for the better understanding of the

model and its implementation. The design model

was implemented and revised on a Java Web

framework for the development of Web business

applications (a set of Web forms). Two Form

specific generators were successfully

implemented with very little resource

consumption. Both Form specific generators

generate fully functional Web forms using only a

database specification and a configuration

(feature) specification, both in XML format. The

implemented generators use code templates to

avoid code duplication and to make generators

easy to understand and maintain.

Keywords: generator, generative, Web, form,

1 Introduction

The basic goal of generative programming is

to build generative models for system families

and to generate concrete systems from those

models [1]. Generative programming is used

with other disciplines like Domain engineering

and Software product lines. The goal of Domain

engineering is to develop a common architecture

for a system family and to devise a production

plan for the family members. Software product

lines tends to make use of system’s common

features to increase the productivity and quality,

and of course to reduce the development time,

costs and complexity [3]. Generative

programming uses feature modelling techniques,

in addition to the commonly used UML class

diagrams, use cases and other. Feature modelling

is a creative activity of modelling the common

and the variable properties of concepts and their

interdependencies [4]. Unlike generic

programming whose focus is on

parameterization, generative programming

deploys metaprogramming. Metaprogramming

refers to developing programs designed to read,

generate, analyse or transform other programs,

and even modify itself while running. Template

metaprogramming is a metaprogramming

technique in which code templates are used to

generate the source code. Czarnecki and

Eisenecker [3] defined a generator as a program

that take a higher-lever specification of a piece of

software and produces its implementation. The

development of generators is expensive and can

become quite complex. If we are dealing with

complex generators, we need to modularize their

design. That means that we should implement

complex generators as a set of cooperating,

smaller generators [3].

The basic motivation for the development of

generators is to avoid repetitive and tedious

programming tasks [7]. When working on the

development of Web based business software

solutions we encounter a set of very similar

forms on different projects. Codebooks are the

most basic example of such forms. Costumers

like to have many codebooks in their

applications. Codebooks are used on other forms

in a form of a select or lookup input fields. They

make software products more configurable and

costumers are more generally happy with

adaptable software solutions. Codebooks are just

one example of Web forms with a lot of

repeatable components that can be easily

generated. If we develop a large number of such

forms, the development of a form generator will

pay off in a certain period of time. Of course, it

is necessary to make an assessment on the

concrete numbers for every company. This

article presents a design model for the

development of Web form generators. The model

is based on the Web interface, modular

generators design and code templates. XML is

used for the specification of database tables and

features (metadata used by generators, e.g. labels

for input fields). The new form feature selection

is done on the Configuration form. That is a Web

form used for the feature selection and

generation of other forms. It uses generators to

implement the GUI and the GPL source code of

the new, generated forms. The result of the

generation process is a fully functional Web

form or a set of Web forms whose GUI (HTML /

JS components) and GPL source code can be

extended. That means that other components can

be added to forms after their generation. The

goal is to reduce the Web forms development

time, facilitate maintenance and improve

software quality using generative programming

techniques.

2 Background of the research

In generative programming, various generators

solutions and design models were presented in

the beginning of 21st century. The solution

proposed in this paper is based on the Web

interface, modular design and metaprogramming.

It is suited for the development of Web

generators for a certain group of forms. For

example: codebooks, classic view and edit forms,

etc. Each company should identify and analyse a

group of forms for which a code generator

implementation would pay off in the appropriate

period of time.

Jarzabek's XML-based Variant Configuration

Language (XVCL) is a script language for

configuring and managing variants in programs

and other kinds of documents [9]. It uses x-

frames as building blocks of program code to be

generated. These x-frames are organised in a tree

structure, where specification x-frames (SPC-s)

are on the top of the hierarchy, describing the

process of the system assembling.

Variants can be described as differences

between system requests that belong to the same

domain. Automating variant management

reduces the risk of errors in applications which

makes development of domain specific

applications cheaper and less time consuming.

GenVoca is a composition model that uses

component to define scalable hierarchy system

families [1]. The hierarchy of software system is

defined with the series of abstract virtual

machines implemented by appropriate

components while realm is a components cluster.

The grammar of software system is defined by

realms and their components. A set of sentences

defines language and set of compositions defines

system family [1].

CodeWorker [6] is a parsing and code

generation tool. It uses specification that can be

written in arbitrary syntax, but it's required to

write scripts to parse specification and populate

parse tree with specified data. Those scripts are

called parse scripts and CodeWorker enables

using of Extended Backus-Naur Form (EBNF) to

define their syntax.

 Specification-Configuration-Templates (or

shortly SCT) is generator model that is based on

dynamic frames [8]. Each frame consists of

program specification that defines the specific

difference of generated application inside its

problem domain, configuration with program

assembly rules and code template as a building

block of a generated program. Specification

consists of attributes in a hierarchic order and

their values. SCT Generator generates source

code by merging features from specification with

code templates. Besides defining features of

generated applications, specification also defines

program files that have to be generated. In a case

of a special implementation of the SCT, named

as Autogenerator [5], the generated files are

virtual, just marking the names of program

pieces to be generated. Configuration defines the

connections between specification and code

templates. Each configuration rule is made of

connection, source and (optionally) code

template. Code templates are the fragments of a

code that contains connections. The process of

source code generation starts with the initial SCT

frame that contains the complete Specification

and Configuration and only one template from

the set of all Templates. Other SCT frames are

produced dynamically for each connection in the

template, forming a generation tree [5].

3 Web form generators design

model

The goal is to make generators design as

modular as possible to avoid complexity and

difficulties in maintaining. That means that

instead of developing one complex generator, we

should develop a set of smaller, cooperating

generators [3]. The modular generators design

will make them easier to understand and most

importantly easier to maintain. The presented

design model of Web form generators uses a

database table specification in a XML format.

Figure 1 displays the usage of form

generators. The user needs to write the database

specification manually or using a form named

DB Designer. The DB Designer is a Web form

that simplifies the creation of an XML database

table specification. XML database specification

contains database tables and its columns

definitions. It can also contain some specific

metadata used by generators. Once the user has

created the database table specification he uses

the DB Creator form to generate a DB Record

for the table. DB Creator will create a table in

the database (using SQL) and generate a DB

Record in a specific GPL (using ORM). Once the

user has created the DB Record he can open the

Configuration form and select the wanted table

(DB Record) on it.

Fig. 1. Frontend of Web form generators model

The Configuration form will list all of the table

columns and the user can choose a set of

provided features. For example:

 columns to show on the screen,

 columns used for searching,

 columns used for sorting,

 document management feature,

 workflow tasks feature,

 etc.

Once the user selects all of the wanted

features for his new form / forms, he can

generate them with a single command (mouse

click). Fully functional Web forms are generated

including the GUI (HTML / JS components) and

forms GPL code. Figure 2 displays the backend

part of the model. It answers the question: how

do code generators actually work? The

Configuration form uses a Base generator. That

is a generator that uses a set of smaller

generators (Form specific generators or Feature

specific generators).

Fig. 2. Backend of Web form generators model

In order to facilitate generators maintenance, a

metaprogramming technique has been applied.

Both the Base generator and the Form specific

generators use code templates. The model

provides two types of templates: GPL templates

and GUI templates. The GPL templates contain

the GPL code used by (or intended to be used by)

multiple generators. The main goal of this

approach is to avoid code duplication in multiple

code generators. The GUI code templates contain

the GUI components used by generators. GUI

code templates can contain HTML / JS code or

some other format like XML to specify GUI

components. GUI components specified in XML

can be transformed (generated) to HTML / JS

using GPL / framework specific GUI generators.

The proposed model for the form generators

design enables the creation of small and modular

generators. Code templates are used to avoid

code duplication and to facilitate maintenance.

The UML class diagram of the Web form

generators design model is shown in figure 3.

The diagram specifies that every Configuration

screen is a Web form that uses a Base generator.

Base generator uses Form specific generators

through the implementation of a Generator

interface. Each form generated using this

approach is also a Web form.

Figure 3: Class diagram

Generators created using this model are used

for generating Web forms that work with

database tables and use a set of Web GUI

components. Those components should be

modular and prepared in advance so generators

can use them. Most companies now engaged in

the development of Web business applications

already possess such components, or they can be

easily acquired from the Open source community

(for example jQuery UI or Kendo UI plugins).

4 Web form generators example

The Web form generators design model has

been implemented in Evolution Framework1.

Evolution Framework is a Java Web framework

with a set of tools and components used for

1 http://www.evolution-framework.com/

creating business Web applications. It is a

framework with over a 100 Web components

(controls) that can be used by form generators. In

this implementation, Evolution Framework is

supplemented with two Form specific

generators: View screen generator and Edit

screen generator. Both Form specific generators

implement a Generator interface shown in figure

4. Using the displayed interface, the Form

specific generators define their specific imports,

class variables, XML (GUI) body and Java

(GPL) body. This interface is then used by a

Base generator to perform form specific code

generation as shown on the class diagram.

Fig. 4. Form specific generators interface

Form specific generators use code templates

in their XML and Java body definition. In

Evolution Framework, Web component / control

definitions are saved in a XML format. A sample

of an XML template for an Evolution

Framework Web component / control is shown

on figure 5. It is the definition for a Grid

component (GUI control) where all of the

parameters are listed in the first line of the

template. Evolution Framework already has the

support for the generation of the required HTML

and JS code from such XML component

definition (a feature called Visual Editor).

Fig. 5. Grid component XML template

A sample of a Java code template is shown in

figure 6. It is a template of Java code used to

execute SQL SELECT queries in Evolution

Framework. Same as in the XML template

example, all the parameters are listed in the first

line of the template.

Fig. 6. Evolution Framework Java template for

executing select queries

Using code templates and modular design of

generators, the implementation of View screen

http://www.evolution-framework.com/

generator has less than 330 lines of Java code,

and the implementation of Edit screen generator

has less than 240 lines of Java code. Both

generators are used on a single Configuration

form where the user chooses a set of features for

his new generated forms. Configuration form for

the generation of view and edit forms in

Evolution Framework has less than 380 lines of

Java code. For comparison, a single generation

process, generating a view and edit forms from

the simple XML specification displayed in figure

7, generates more than 400 lines of Java code.

This sample specification was created manually,

but DB Designer can also be used to create it.

Fig. 7. Sample Database specification in XML

DB Creator was then used to actually create the

table in the database using SQL CREATE

TABLE. The DB Creator form also creates a DB

Record for the sample table using Evolution

Framework’s custom ORM. User can now open

the Configuration form and select the XML file

with the database specification, and the sample

table (or DB Record). The Configuration form

will list all of the table columns and the user can

choose which columns he wants to show on the

view, and on the edit screen. User also chooses

which columns he wants to use for searching

(base and advanced search) and mark some

columns as invisible on the view form, or

invisible / disabled on the edit form. This

implementation of Configuration form and Form

specific generators makes use of Evolution

Framework Web components / controls so it also

enables some additional features like record

document management and record tasks

(workflow). Figure 8 displays the generated view

form. The view form consists of a grid (with

support for pagination, columns sorting, rows

selections), basic search input field, advanced

search popup with a number of different types of

input fields, and action buttons (search, new

record, delete selected). The edit form consists of

a different types of input fields, action buttons

(close form, delete record, save record),

document management component, workflow

tasks component and workflow panel

component. From a specification containing 19

lines of XML, more than 400 lines of Java code

were generated in this sample as we created two

fully functional Web forms in Evolution

Framework, using the generators whose design

followed the proposed model. A single

programmer and 18 work hours were spent on

this implementation of two Form specific

generators in Evolution Framework using the

proposed design model.

Figure 8: Generated view form

5 Conclusions

Within this paper a design model for Web

form generators was proposed. The model was

implemented and revised on Evolution

Framework form generators implementation. The

design model is highly modular and tends to

make use of the available components

(developed in house or Open source) commonly

used in Web forms. The application of the

proposed model and the implementation of Web

form generators has a number of advantages:

 form development speed,

 less possibility for errors as

generation process is well tested,

 code templates reusability,

 the same code for the same

functionalities on different forms /

projects facilitates maintenance,

 ability to define well commented

and easy to understand generated

code.

The model was intended for usage in the

development of business Web solutions, but it

can also be used in the development of

educational Web software. It is limited to Web

forms working with database tables. Not all of

the Web forms that meet this requirement should

be generated. It depends on the each company to

assess and decide whether a form generator

development would pay off for them in a specific

case. If the answer is positive, the proposed

design model provides a solution to make the

form generators modular, easy to understand and

maintain.

In our future work, we plan to implement a

few more Specific form generators in Evolution

Framework using the proposed design model.

We also plan to test and implement the proposed

design model on other solutions for creating Web

forms (other GPLs and frameworks).

Further research will be oriented to enabling

the form regeneration without the removal of

code added after the last generation. The lines of

code (functionalities) added manually by

developers after form generation shouldn’t be

deleted upon the form regeneration. This would

enable a higher level of extensibility for the

proposed design model.

References

[1] Blair, J., Batory, D. A Comparison of

Generative Approaches: XVCL and

GenVoca. Technical report, The University

of Texas at Austin, Department of Computer

Sciences, December 2004.

[2] Czarnecki K.: Generative Programming -

Principles and Techniques of Software

Engineering Based on Automated

Configuration and Fragment Based

Component Models, PhD dissertation, 1998.

[3] Czarnecki K., U. Eisenecker: Generative

Programming: Methods, Tools, and

Applications, Paperback, 2000.

[4] Kang K., Lee J., Donohoe P.: Feature-

Oriented Product Line Engineering, IEEE

Software, 2002.

[5] Magdalenić I., Radoševic D., Orehovački T.:

Autogenerator: Generation and execution of

programming code on demand, Expert

Systems with Applications, 2013.

[6] Lemaire, C.: CODEWORKER Parsing tool

and Code generator - User’s guide &

Reference manual,

http://codeworker.free.fr/CodeWorker.pdf,

2010.

[7] Mernik M.: When and how to develop

domain-specific languages, ACM

Computing Surveys, 2005.

[8] Radošević D., Magdalenić I: Source Code

Generator Based on Dynamic Frames,

Journal of Information and Organizational

Sciences, 2011.

[9] Zhang H., Jarzabek S.: XVCL: A

Mechanism for Handling Variants in

Software Product Lines, Science of

Computer Programming, 2004.

