
 1

1. Introduction

Until now, generative programming has been regarded as a discipline of object-
oriented programming. However, in recent years there has been a world-wide surge
of projects aimed at the development of scripting languages for application
generators, such as Open Promol (Štuikys et al., 2001) and CodeWorker (Lemaire,
2003). Advantages of using scripting languages should be reached through avoiding
certain weaknesses of object-oriented programming, primarily the (Ousterhout, 1998)
rigidity of the object model, high level of standardization and the need to have a
translation/compiling phase during the development of the program. In addition, we
could single out the following scripting language characteristics useful in generative
programming (Štuikys et al., 2001):

 - scripting language abilities in character queue processing,
 - connecting completed components written in target program languages and

- flexibility of scripting language syntax stemming from low standardization
level.

The reason scripting language has not been used so far was the absence of applicable
models, using which one could model the generators - ability not available to object
oriented modelling based on UML diagrams. Therefore, in order to enable scripting
languages for generative programming, the industry needed to develop the
corresponding scripting model (Radoševi�, 2005). The scripting model represents the
graphical model based on the implementation of aspects, i.e. characteristics not
connected to individual organizational program units such as functions and classes,
but showing up in various application parts, (Kiczales et al., 1997)(Lee, 2002). In that
respect, the scripting model is a part of the group of so-called Join Points Model
(Kandé et al., 2002)(Lieberherr, 2003). Also, the scripting model is a part of the type-
free system group (Albano et al., 1989), since the connecting points do not represent
classes and their objects, but only connections between metaprograms and
characteristics defined in the application specification(Radoševi�, 2005).
The object and the scripting model are compared with regard to the following criteria:
static and dynamic view within the processing level and the level of software
development design, specifications of program requests, implementation of
encapsulation and succession, and the relationship between base model elements
(classes/metascripts).
Next came the analysis of compatibilities between the two models, but also important
conceptual differences. The scripting model is a free-type system (and UML is not),
which simplifies the connectivity of the aspects using the join points model. To wit,
standardization represents a problem in realizing connective points, thereby also for
the implementation of aspects within the join points model (Barca,
2003)(Roychoudhury et al., 2003) and for graphical modelling of aspects (Stein et al.,
2003)(Gray et al., 2002). Additionally, using the scripting model , i.e. due to its
simplicity, a higher flexibility in the development of generators and applications
using the Boehm cyclical software development model is possible (Boehm, 1988).

 2

2. LEVELS OF MODELLING

UML supports modelling of complex systems through various views in order to
reduce the complexity of each such system, while also supporting various modelling
levels (business level and IS level). If we approach the case from the standpoint of
static and dynamic view (OMG, 2006), the architecture of the development of s
complex software system supported by UML diagram techniques could be modeled
as shown in Fig. 1. According to this architecture, we recognize the following levels:
the USE CASE level; the processing level, the design level and the implementation
level (Jacobson et al., 1999), on Fig. 1. The attempt to decrease the complexity of
such elaborate systems is, therefore, made through modelling static and dynamic
system components (static/dynamic view).

Fig. 1: Architecture of software system development supported by UML diagram
techniques

The paper especially emphasizes the defining of relationships between the generator
scripting model and base levels of the UML model (Use Case and Process).
The scripting model defines only the dynamic view, and includes two diagrams on
two levels: the specification level and the processing level. The dynamic view is a
part of the programming code template – metascripts (Fig. 2).

 3

Requirements

Application/component
(implementation provided by

generator)

Specification level
(Diagram of specification

parameters)

Process level
(The metascripts diagram)

Design level
(metascripts and source
preprocessing functions)

Scripting model
(Static view)

Metaprograms
(Dynamic view)

Fig. 2: Levels of scripting model architecture

3. SIMILARITIES BETWEEN THE OBJECT AND SCRIPTING MODEL

3.1. BASIC MODEL ELEMENTS

Class in the object model represents a cluster of attributes and operations (methods)
used to describe the structure and behaviour of class objects.. Object is an instance of
the class, i.e. actualization of something which exists within time and space. Within
the Class Diagram, class is represented by a rectangle containing the class name,
attributes and methods, and rights of access (Fig. 3).

Fig. 3: The Class concept

Metascript from the scripting model represents a metaprogram, part of the code
used for generating. The metascript is in the metascript diagram represented by a
rectangle (Fig. 4) containing the metascript name, the source of the program code and
(optional) exit from the program code (i.e. the name of the exit file).

 4

METASCRIPT

<source of
the code>

[<OUTPUT>]

Fig. 4: Metascript element in the metascript diagram

Script (=application, generated program code) represents the product of generating,
i.e. application or a part of an application defined through one or more metascripts
and data connections/sources.

3.1.1. RELATIONS BETWEEN BASE ELEMENTS

Classes can be connected through the following connection types (OMG, 2006):

- association (structural relationship between classes or class instances),
- aggregation (special type of association showing the relationship between

parts and the whole; aggregation by reference is a weaker type of
relation/connection in which the class as a whole and class as a part are
independent, while aggregation by value is the stronger connection type in
which the class as a whole depends on the class as a part and vice-versa),

- dependability (one class uses the other during the execution of its operation),
- generalization (subordinate class is a specialization of a superior class; it has

all its traits, but can also have additional characteristics) and
- actualization (of interface class).

The static class structure and their inter-relations can be shown using a certain type of
diagram technique: UML class diagram. Relations between the metascripts and
between other elements of the scripting model, connections and sources, can all be
seen in the metascript diagram (Fig. 5). Each metascript diagram defines individual
multi-level generator.

 5

Level 1 Level n

one-level
generator

metascript

link
source

Fig. 5: Metascript diagram

Connections between the elements of the metascript diagram may be as follows:

a.) Aggregation. The object model differs aggregation by reference and aggregation
by value (Fig. 6), while the metascript diagram defines aggregation by value only, as
a basic model between different level generators. Metascript of a higher level grows
using characteristics of lower-level metascripts, that is, a higher-level generator is
made by superposition of several single-level generators (Fig. 5).

Fig. 6: Aggregation by reference and aggregation by value in class diagram

Aggregation relationship between the superior and subordinate generator is 1: 1..N
(Fig. 7).

.

.

.

Fig. 7: Aggregation relation between generators

 6

Aggregation in the metascript diagram is selective, i.e. its actualization in the final
implementation depends on the specification of a particular application.

b.) Association. Association exists between the metascript and the source, within the
individual single-level generator. Connections represent substitute symbols and
physically present within the metascript in a way that each connection within the
metascript may appear once or several times, so that the relation between the
metascript and the source is 1..N:1 (Fig. 8).

#link#

#link#
.
.
.

#link#

source

#link#

Fig. 8: Each individual connection may have more physical entries within any one
metascript

3.2 BASIC CONCEPTS

Of all basic concepts of object programming (encapsulation, succession,
polymorphism and data hiding) the scripting model supports the following:

Encapsulation in the scripting model exists within the application specification.
Application specification encapsulates given application aspects on the level of
individual branches of the application description parameter diagram. Characteristics
may relate to data and functionality.
Succession within the scripting model functions in the following manner: the
superior metascript gets increased by characteristics and functionalities of
subordinate metascripts and data sources. This is completely different from the object
model, where subordinate classes succeed the superior ones. Within the scripting
model, succession is selective, determined by application specifications. This same
way leads to polymorphism - several implementations are gained for one metascript,
but base characteristics (within the metascript) remain unchanged.

3.3. SPECIFICATION OF PROGRAMMING REQUESTS/DEMANDS

Business function (Use Case) is a complex category which can be shown (modelled)
using various diagram techniques, depending on the function components which we
wish to include in the model. For example, for a certain function we can show

 7

activities, events, messages, states, goals, resources, data and other components and
their inter-connections. The static view of the function shows WHAT the function
does, while the dynamic view shows HOW the function works, and represents the
complete view of all its components. The text further features short descriptions of
several UML diagram techniques.
UML Use-Case Diagram (Fig. 9): static view of system functionality and
participant (actor) interaction with application cases. In other words, it is a user view
of the functioning of the system (what the system does, not how it does it). Users who
use the application system are tied into individual functions (i.e. cases of use) aimed
at solving their tasks.

Fig. 9: Example of UML Use Case diagram

Use (application) cases are implemented within the metascripts, as program code
templates which contain common characteristics of various applications within the
problem domain. Crosscutting characteristics (aspects) of various application cases
are singled out into application specification, i.e., separation of concerns (views) is
done as presented by (Stein et al., 2003), Fig. 10.

Fig. 10: Separation of crosscutting concerns

Application specifications contain values for each characteristic (aspect) and are
defined by the diagram of application description parameters (Fig. 11), where specific
corresponding tags are used for individual characteristics. Dispersion of
characteristics onto various parts of the application is defined by the metascript
diagram, where characteristics are represented by the element source.

 8

<tag 1>

<tag 1.1> <tag 1.2> <tag 1.n>

<tag n>

<tag n.1> <tag n.2> <tag n.n>

level 1

level 2

level n
Fig. 11: Diagram of application description parameters

4. CONCEPTUAL DIFFERENCES

UML is a generic model because it defines generic components containing all
characteristics which could be used by all applications from the problem domain. At
the same time, UML is a model based on types (i.e. Type System), which makes the
implementation of connecting points within aspect modelling harder. Connecting
points in such a system represent complex types (classes) (Stein et al., 2002).
The scripting model represents the generative model, because individual
characteristics (aspects) are included in the generated application according to its
specification, i.e. characteristics are introduced into the goal application according to
need, thereby achieving optimization with relation to the generic model. Furthermore,
the scripting model is not based on types, i.e. it represents a type-free system (Albano
et al., 1989). Connecting points in the scripting model do not represent classes and
their objects, but only connections between metaprograms and characteristics defined
in application specification (Fig. 12).

Level 1 Level n

#link1#

#link2#

#link3#

#link4#

#link6#

#link n#

#link m##link5#

Type-free links

Fig. 12: Connection points in the metascript diagram

 9

This significantly simplifies aspect implementation using connecting points, and the
generative application development becomes more flexible, which allows for easier
use of the Boehm spiral model of software development (Boehm, 1988) (Fig. 13).

Fig. 13: Generative application development as spiral development using the Boehm
(Boehm, 1988) model

Generative application development begins with the Requirements plan and the
problem domain prototype application. This is followed by the Separation of
concerns, so that specific characteristics of each individual application are contained
within its specification, while common characteristics end up in metascripts. The
scripting model defines the assembling of given application within the presented
problem domain.

5. CONCLUSION

Comparison of the object and the scripting model has shown important analogies
between the two models in view of basic model elements, their inter-relations and
basic concepts within the processing level and the design level in the development of
the software system. However, important conceptual differences have also been
ascertained. Specifically, UML represents a generic model based on types (classes),
and as such has significant problems in aspect modelling within the Join Point Model.
On the other hand, the scripting model represents the generator model and is fully
type-free. This eases generative application development, since it makes the

 10

development system much more flexible, and also facilitates the use of the Boehm
spiral model for software system development.

Bibliography

Albano, A., Dearle, A., Ghelli, G., Marlin, C., Morrison, R., Orsini, R., Stemple, D.

(1989).A Framework for Comparing Type Systems for Database Programming
Languages, http://citeseer.ist.psu.edu/albano89framework.html

Barca, M. (2003). Aspect Oriented Programming, With an Overview of AspectJ, CIS
Department of Ohio State University, http://www.cse.ohio-state.edu/ ~barca

Boehm, B.W. (1988). A Spiral Model of Software Development and Enhancement,
Computer, May 1988, v. 21 no. 5, pp. 61-72.

Gray J., Bapty, T., Sandeep N., Ariruddha G. (2002). Aspect-Oriented Domain-
Specific Modeling, http://www.isis.vanderbilt.edu/projects/PCES/AODM.pdf

Jacobson, I., Booch, G., Rumbaugh, J. (1999). The Unified Software Development
Process, Addison-Wessley

Kandé, M.M., Kienzle,J., Strohmeier, A. (2002). From AOP to UML - A Bottom-Up
Approach, 1st International Conference on Aspect-Oriented Software
Development, Enschede, The Netherlands,
http://lglwww.epfl.ch/workshops/aosd-uml/Allsubs/kande.pdf

Kiczales, G., Lamping, J., Mendhekar, A., Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, John Irwin. (1997). Aspect-Oriented Programming. In
Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), Finland. Springer-Verlag LNCS 1241. June 1997.

Lee, K.W.K. (2002). An Introduction to Aspect-Oriented Programming, COMP610E:
Course of Software Development of E-Business Applications (Spring 2002),
Hong Kong University of Science and Technology, 2002.

Lemaire, C. (2003). CODEWORKER Parsing tool and Code generator - User’s guide
& Reference manual, http://codeworker.free.fr/CodeWorker.pdf,
CodeWorker.free.fr

Lieberherr, K.J. (2003). General AOP: Join Point Model, Demeter, Center for
Software Sciences, 2003., http:// www.ccs.neu.edu/research/demeter/

Object Management Group (OMG) (2006). The Unified Modelling Language,
http://www.omg.org

Ousterhout J. K. (1998). Scripting : Higher Level programming for the 21st Century,
IEEE computer magazine, march 1998.

Radoševi�, D. (2005). Integration of generative programming and skripting
languages, doctorate thesis, Faculty of Organization and Informatics, Varaždin,
pages 41-82.

Roychoudhury, S., Gray, J., Wu, H., Zhang, J., Lin, Y. (2003). A Comparative
Analysis of Meta-programming and Aspect-Orientation, Proceedings of 41st
Annual ACM Southeast Conference, Armstrong Atlantic State University,
Savannah, Georgia, March 7-8 2003

Stein D., Hanenberg, S., Unland R. (2003). Position Paper on Aspect-Oriented
Modelling: Issues on Representing Crosscutting Features, International

 11

Conference on Aspect-Oriented Software Development (AOSD 2003), Boston,
2003.

Stein D., Hanenberg, S., Unland R. (2002). On Representing Join Points in the UML,
2nd AOSD-UML Workshop at UML '02, Dresden, Germany, 2002.

Štuikys, V., Damaševi�ius, R., Ziberkas, G. (2001). Open PROMOL: An
Experimental Language for Target Program Modification, Software
Engineering Department, Kaunas University of Technology, Kaunas,
Lithuania, 2001.,
http://soften.ktu.lt/~damarobe/publications/Vytautas_Stuikys.pdf

 12

Corresponding Author Data:

Name and email address of corresponding author: Danijel Radoševi�, danijel.radosevic@foi.hr

Manuscript Data:

1. Author(s) Name(s): Danijel Radoševi�, Melita Kozina, Božidar Kli�ek
2. Title of Manuscript: Conceptual similarities and differences between Object Model and Generator Application
Scripting Model
3. Key words: UML, scripting model, aspects, comparison
4. Abstract: The basic features of UML and scripting model of application generators are compared in this paper. The
comparison between two models is performed according to the following features: static and dynamic view within the
process level and design level, implementation of encapsulation and inheritance, relationships among basic model
elements (classes/metascripts) and software requirements specification. Compatibilities of models are ascertained, but
there are also conceptual differences. The scripting model actually represents a model of generators and it is based on
aspects and their distribution on different program parts. UML is based on the generic approach which lacks
efficiency in dealing with the modelling of aspects due to the features of the object model being a system based on
types. The comparison shows that the scripting model is simpler and type-free. As such, it enables more flexibility in
the development of application generators, and the application of Boehm's cyclic model of software development.
5. Acknowledgment(s):
6. Thanks:
8. Number of Additional Copies of Scientific Book: -
9. Please send my copy/copies of Book to the following address: Faculty of organization and informatics, Pavlinska
2, 42000 Varaždin, Croatia

DAAAM Authors Data:

1. Digital Photo:
2. First / Middle / Family Name: Danijel Radoševi�
3. Titles: PhD
4. Position / Since: Higher assistant/2005
5. Institution/Firm: Faculty of organization and informatics, University of Zagreb
6. Place and Date of Birth (yyyyy-mm-dd): Zagreb, Croatia, 1969-03-27
7. Nationality / Citizenship: Croatian/Varaždin
8. Field of interests (key words): generative programming, text mining
9. Hobbies:
10. E-mail address: danijel.radosevic@foi.hr
11. Home Page: http://www.student.foi.hr/~darados
12. Postal address: Pavlinska 2, Varaždin, Croatia
13. Phone & Fax #:385 042 390 834, 385 042 213413

1. Digital Photo:
2. First / Middle / Family Name: Melita Kozina
3. Titles: PhD
4. Position / Since: Assistant Professor/2006
5. Institution/Firm:Faculty of organization and informatics, University of Zagreb
6. Place and Date of Birth (yyyyy-mm-dd): Varaždin, Croatia, 1965-06-18
7. Nationality / Citizenship: Croatian/ Varaždin
8. Field of interests (key words): business systems modelling, ICT management
9. Hobbies: -
10. E-mail address: melita.kozina@foi.hr
11. Home Page: http://www.foi.hr/nastavnici/kozina.melita/index.html
12. Postal address: Pavlinska 2, Varaždin, Croatia
13. Phone & Fax #:385 042 390 800, 385 042 213413

1. Digital Photo:
2. First / Middle / Family Name: Božidar Kli�ek

 13

3. Titles: PhD
4. Position / Since: Full professor/2004
5. Institution/Firm: Faculty of organization and informatics, University of Zagreb
6. Place and Date of Birth (yyyyy-mm-dd):1957-07-07
7. Nationality / Citizenship: Croatian/Varaždin
8. Field of interests (key words): AI, multimedia systems
9. Hobbies:
10. E-mail address: bozidar.klicek@foi.hr
11. Home Page: http://www.foi.hr/nastavnici/klicek.bozidar/index.html
12. Postal address: Pavlinska 2, Varaždin, Croatia
13. Phone & Fax #: 385 042 390 829, 385 042 213413

