Hindawi Publishing Corporation

The Scientific World Journal

Volume 2014, Article ID 158679, 11 pages
http://dx.doi.org/10.1155/2014/158679

Research Article

Hindawi

Autogenerator-Based Modelling Framework for Development of
Strategic Games Simulations: Rational Pigs Game Extended

Robert Fabac, Danijel Radosevic, and Ivan Magdalenic

Faculty of Organization and Informatics, Pavlinska 2, 42000 Varazdin, Croatia

Correspondence should be addressed to Robert Fabac; rfabac@foi.hr

Received 12 March 2014; Accepted 1 August 2014; Published 31 August 2014

Academic Editor: Josefa Mula

Copyright © 2014 Robert Fabac et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

When considering strategic games from the conceptual perspective that focuses on the questions of participants’ decision-making
rationality, the very issues of modelling and simulation are rarely discussed. The well-known Rational Pigs matrix game has
been relatively intensively analyzed in terms of reassessment of the logic of two players involved in asymmetric situations as
gluttons that differ significantly by their attributes. This paper presents a successful attempt of using autogenerator for creating the
framework of the game, including the predefined scenarios and corresponding payoffs. Autogenerator offers flexibility concerning
the specification of game parameters, which consist of variations in the number of simultaneous players and their features and game
objects and their attributes as well as some general game characteristics. In the proposed approach the model of autogenerator
was upgraded so as to enable program specification updates. For the purpose of treatment of more complex strategic scenarios,
we created the Rational Pigs Game Extended (RPGE), in which the introduction of a third glutton entails significant structural
changes. In addition, due to the existence of particular attributes of the new player, “the tramp,” one equilibrium point from the

original game is destabilized which has an influence on the decision-making of rational players.

1. Introduction

This paper discusses the issue of simulation of strategic
games that fall within the domain of game theory analysis.
As a discipline of interactive decision-making, game theory
deals with noncooperative as well as cooperative scenarios.
However, game theory is primarily concerned with analyzing
competitions or conflict situations, defining the choices for
each individual player and examining possible resulting
outcomes and behaviors in such competitive games [1].
Deeper insights into the established game theory scenarios
or models have been enabled by the application of computer
programs. Yet tractability limitations have been found to be
a common disadvantage of computer-performed simulation
models [2]. Namely, the decision process is hard to trace even
if the source code is provided. The modelling framework for
the development of strategic games scenarios described in
this paper gives a detailed view of the tool on which the
simulation is performed and thus increases the tractability of
simulations.

A literature review reveals that common approaches in
the field of game theory are the use of agents [3] and
different models of learning such as the Monte Carlo method
and temporal difference learning [4]. The intention of our
approach entirely focused on real players is to provide a
modelling framework that would be easily upgradable with
new features. Our core example refers to performing a
simulation of the well-known game from the theory of games
called “Rational Pigs” or “Boxed Pigs” The basic scenario
examines strategic solutions for two gluttons (two pigs) that
are placed inside a large cage where each of them can use a
lever to cause the release of food into the cage [5]. One of
the gluttons is relatively large, which brings asymmetry into
the strategic situation. The food is released into the cage at
the opposite side of the lever, which presents a handicap for
the glutton who actually presses the lever because of the delay
in his feeding activity. Although rational decision-making in
the afore-described situation has been analyzed by a number
of authors such as [6-8] and others, the most acknowledged
analysis is generally considered to be the one by McMillan


http://dx.doi.org/10.1155/2014/158679

[9]. Gintis in [10] discusses a game which involves a large
and a small monkey, where the strategic framework is almost
identical since it is necessary for the provision of food to climb
a tree with fruits and shake the tree.

The particular feature of the approach presented in this
paper is that in it generative programming techniques are
applied to the “Boxed Pigs” model. According to Czarnecki
and Eisenecker [11], generative programming is a discipline
within automatic programming aimed at automating the
software development process. In general, such automat-
ically produced software is stored for later use (e.g., in
program files). On the other hand, in the autogenerator-based
approach [12] the necessary piece of code is produced and
immediately executed on demand. Instead of program files,
in the case of autogenerator the generated code is stored
into variables and also executed from them. The concept
also uses the convenient capability of scripting languages
to autoevaluate the programming code. In our particular
case Python is used owing to the flexibility of its supported
data structures (e.g., Python lists) and its object model
that is much more sophisticated in comparison with other
scripting languages oriented to string processing (e.g., Perl or
JavaScript).

In the simulation of the elaborated strategic game, pro-
gram specification is used for code generation as well as for
recoding a set of game properties in course of the game.
Such properties can refer to the game as a whole (like the
state of a semaphore and the game phase) and tanks (their
position, amount of fuel, open or closed state, etc.) as well
as to players (position, chosen tank, amount of fetched fuel,
game restrictions, etc.).

In addition to applying generative programming tech-
niques, in the presented research we focused on the for-
mulation of more complex scenarios through “Rational Pigs
Extended,” where the game is modelled with three gluttons, in
order to expand the sphere of research into this matter. The
first issue examined concerns the stability of game solutions
considering two gluttons in a new situation that includes
a third player. The second important issue refers to the
possibility of experimental laboratory examination of the
players’ learning that occurs in repeated game scenarios.

2. Modelling a Framework for the
Development of Games of Strategy

2.1. Introduction to Autogenerator. Autogenerator is a model
of application development where program code is generated
and executed on demand. It is based on the SCT generator
model [13] that is aimed to produce entire applications
instead of skeletons that require additional work.
Autogenerator represents an example of the advanced
use of frame-based software development. Unlike some
other frame-based generator models, like XVCL [14] or
Bassett’s frames [15], autogenerator relies on dynamic frames,
which means that frames are dynamically created during
the source code generation process. This increases flexibility
in the development of generators with regard to the use
of static frames. In the acronym SCT the basic model

The Scientific World Journal

elements—Specification (the term Specification (written with
“S”) refers to the model element of the SCT generator model),
Configuration, and Templates—are comprised. Specification
contains user/developer specified features of the generated
application in form of attribute-value pairs. Configuration
is a set of rules that manage the generation process, where
programming code is produced by assembling the features
from Specification, together with code artifacts stored in
Templates. Templates refer to a set of code artifacts that are
used as building blocks of generated applications. Specifi-
cation, Configuration, and Templates together build an SCT
frame, which contains all the information needed by the
SCT generator to produce program code. The autogeneration
process is shown in Figure 1. The user sends a request which
contains information about the user and the action that the
user wants to take. The request is accepted by the request
handler, whose task is to decompose the request, determine
what action to take, and call the source code generator to
produce the appropriate source code. It should be noted that
in the autogeneration process only the source code that is
needed for the user’s request to be fulfilled is generated. The
generated source code is then stored in a variable, where
it can be evaluated by scripting languages like JavaScript,
Perl, or Python. The generated source code is evaluated
by the execution unit, as shown in Figure 1. The execution
unit executes the generated source code together with the
arguments provided by the request handler. Those arguments
are represented in Figurel as the application context. The
execution unit sends the result to the user.

In the former version of autogenerator three key new
features of generated software were introduced. The first one
is the possibility of changing the application “on the fly;”
which means that any change in Specification is immediately
applied to the autogenerated application. The second one is
the usage of imperative instructions in Specification. Such
instructions are aimed to be performed only once, usually
to harmonize the program code with some program depen-
dency (e.g., to perform the ALTER TABLE instruction to
change the database table structure when the user/developer
adds/deletes some field in Specification). After they have
been executed, imperative instructions are deleted from
Specification. The third feature is introspection which, in the
case of autogenerator, gives the developer an insight into basic
model elements that are used in the production of a specific
piece of code (e.g., whose subset of the SCT model is used in
the production of some data editing form, data review, etc.).

The model of autogenerator was extended for the purpose
of implementing a simulation mechanism, like the strategic
game in our example, by introducing the possibility of
changing Specification from the autogenerated application.
This includes operations such as changing attribute values,
adding new attributes, deleting the attributes, and testing
their values. Each change in Specification changes the gen-
erated code, making the entire application dynamic. All the
aforementioned features are applied in the program example.

2.2. Autogenerator in Strategic Games. The model of the usage
of autogenerator in strategic games is presented in Figure 2.



The Scientific World Journal

Autogenerator
. Request
Sending request ————
handler
Specification
building
T I" T SCTgenerator |
e M
o o

1
i

I
|
| |
! |
! |
! |
! I
! I
! |
! |
! |
! |
| A 1
: Conﬁguratl on Speci fication Templates :

|
I
! |
! |
! I
! I
! |
! |
! |
! |
! I
! I
! |
I

Source code
generator

Sending response

[
Generated source code

—

Execution unit <« Application

context
FIGURE 1: The autogeneration process.
Autogenerator
Game parameters
Specification
Player 1
parameters
Player n O
4 Player parameters
parameters -
~ /
Action
Game implementation response
Autogenerator
i engine T~
™ Action 0
response T~
Templates

FIGURE 2: Model of using autogenerator in strategic games.



The Scientific World Journal

|
|
Web server i Local user
I
I
|
|
Autogenerator |
I
P — e — |
i SCT Updating functions |
! (updates i
! Specification specification) |
: (attribute -value :
: pairs) i
I
I
| Dynamic E
i|  Configuration application ! Web
! (rules for code (program code in | browser
! n
1 assembling) variables) : —
| |
! I
: Templates !
| (set of code g}enerator !
: artifacts) (produces program :
! code) |
o i
I
I
|

FIGURE 3: Updating attributes and their values.

The implementation of the game is performed by means
of configuration and templates of the program code. Each
strategic game has its own configuration and its own set of
program code templates. The configuration defines the way in
which program code templates are combined to produce the
final program code. If a new feature is to be introduced into
a strategic game, new templates will have to be created and
the configuration will have to be updated. The introduction
of new features is possible even if a strategic game is running
since autogenerator produces program code on demand. The
possibility of changing the rules in a game that is running is
thus an important feature of using autogenerator in strategic
games.

The number of players and their parameters can change
over time since they represent real-life scenarios. The number
of players and their properties are defined in Specification
by a set of parameters. Each player has their own set of
properties that can be updated, extended, or reduced during
the game. Since some strategic games can run longer, adding
new players and changing their properties during the game
make for another key feature of autogenerator usage in the
context of strategic games.

The implementation of the presented model of autogen-
erator in strategic games is described in detail on the model
of the Rational Pigs game discussed in Section 4.

3. Extended Autogenerator Model

Although the feature of regenerating program code on
demand was already included in the original model of
autogenerator presented in [12], the possibility of changing
its Specification by the autogenerated application (in form
of imperative instructions, as described below) was limited.

To fulfill the requirements of different simulations, it would
be useful to specify the attributes of simulated objects in
Specification and changing values of its attributes during
execution. The updated attributes and their values could be
used in the following regeneration cycle in production and
execution of the new program code (Figure 2). Such frequent
reading and updating of Specification may give rise to some
implementation issues, especially in the case of concurrent
access by several autogenerated processes, as discussed in
Section 3.2.

On the other hand, the possibility of updating Specifica-
tion can eliminate the need for usage of any external data
sources within simulations like strategic games.

3.1. Updating Specification. As shown in Figure 3, the user’s
Web browser communicates with the dynamic application
that is created on demand by the generator. The demand can
be sent by the user (e.g., by clicking on a link or a button) or
periodically, to refresh the state (e.g., the state of a simulation,
according to states of participating objects).

Updating functions enables changes in Specification con-
cerning attribute values and adding/deleting attributes. It is
also possible to check the existence of an attribute and its
value. There are five updating functions in the current model
(Table 1).

By using updating functions, Specification also assumes
the role of a small database that can be used in further
generation of the code and the report that contains the values
obtained during execution.

3.2. Design and Implementation Issues. Two main issues
occurred during the process of designing updating functions.



The Scientific World Journal

TaBLE 1: Updating functions.

Function Arguments Description
attribl = parent attribute

try_attrib valuel = value of parent attribute Checks the existence of a specified attribute in Specification
attrib2 = target attribute
attribl = parent attribute

read_value valuel = value of parent attribute Reads the value of a specified attribute

attrib2 = target attribute
value2 = default function value”

attribl = parent attribute

valuel = value of parent attribute
attrib2 = target attribute

value2 = new attribute value

update_value

Updates the value of a specified attribute

attribl = parent attribute

valuel = value of parent attribute
attrib2 = old attribute name
attrib3 = new attribute name

update_attrib

Updates the name of a specified attribute

attribl = parent attribute

valuel = value of parent attribute
attrib2 = name of the new attribute
value2 = value of the new attribute

update_add_value

Adds the new attribute and value to Specification

attribl = parent attribute

valuel = value of parent attribute
attrib2 = name of attribute to be deleted
value2 = value of attribute to be deleted
(condition to be fulfilled for deletion)*”

update_delete_value

Deletes the attribute and value

“If the target value cannot be found.
**Can be replaced by an empty string (= no condition).

The first one concerns addressing the attributes in Speci-
fication. Although Specification has a tree structure, which
suggests the usage of paths similarly to addressing folders on
a hard disk, such paths can be long and should be changed
in case of tree restructuring. In the approach presented in
this paper, names and values of parent attributes are therefore
used instead of paths, with the assumption that their names
are unique. Taking into account this limitation, it is simple to
address parts of Specification as in the following example:

fuel = float(read_value(“+connected_tanks”, “yes”,
“++fuel”, “none”))

» <« » «

update_value(“+connected_tanks”, “yes”, “++fuel’, str

(fuel-1))

which reads and updates the value of fuel (decreased by 1) in

Specification as follows:
common:
+semaphore:red
+game_start:yes
+reset:yes
+connected_tanks:yes
++fuel:60

<- parent attribute/value

<- target attribute/value

Another issue that was encountered concerns concurrent
access to Specification by more autogenerated processes, for

example, in simulations with more (relatively) independent
actors, players, or objects. In some cases, Specification was
reached by a process at the moment when it was only
partially updated, which led to a temporal collapse of the
autogenerated application.

For the purpose of the example implementation, a simple
system of locking/unlocking of Specification was established
to avoid conflicts. Each updating function deals with Specifi-
cation in the same way:

Wait to be unlocked/timeout passed
Lock Specification

Perform update

Unlock Specification

Although this solution could diminish the performance of
the autogeneration system, no such effect was noticed in the
example application.

3.3. Usage of Extended Autogenerator Model in a Strate-
gic Game Example. The strategic game example (available
online at http://gpml.foi.hr/Autogenerator_Strategic_Game/)
includes several players, depending on Specification. Along
with them, there is a special player—the “manager;” who
manages the strategic game by choosing the game scenario,
starting a new game, giving permission for opening tanks



The Scientific World Journal

Local users

|
Web server :
|
i Periodical refresh
| M
Autogenerator i Web P—
: browser
SCT : N
Updating functions | ;
Specification: | 1
P U | riodical refresh Manager
Common: : ===
- Semaphore light -
- Fuel | Web «
. el
Each tank: Dynamic ! browser
- Position application | :
- Capacity { L1
. |
Pl 1
Each player: | et
- Position :
-.]?l?rned fuel i Periodical refresh
Generator N W 7T 3
|
|
%
| Configuration |/ i b:/gxi}’ser
| |
| Templates I/ ! i
: L]
! Player N

FIGURE 4: Extended autogenerator model in a strategic game example.

(in form of a green light on the semaphore), and giving
permission for motion to tank and earning fuel (also in form
of a green light on the semaphore). As shown in Figure 4, each
player accesses the dynamic application which is produced
by autogenerator on demand. This demand could be given
directly by the player (e.g., by a button click), but there is also
a periodical refresh (every 1.5 seconds in the example) that
invokes autogenerator and serves for showing the updated
state of the game (positions of players, states of tanks and fuel,
etc.).

During the game, the values of the attributes in Specifi-
cation change, reflecting the actual state. In addition, values
achieved during the simulation can be easily read from
Specification.

4. Modelling Rational Pigs Game

The situation referred to as a “Rational Pigs scenario” is well
known in game theory. Consideration of rationality in this
game has its roots in the famous experiment from 1979,
reported by Baldwin and Messe, wherein the intelligence of
animals was tested [16]. On the example of the strategic game
in Table 2, we analyze the decisions of participants and search
for an equilibrium state, that is, the solution to the game.
While some authors suggest payoffs that are somewhat
different from those shown above, making generalizations as
in [17], others reduce the importance of the effort and the
associated cost due to the pressing of the lever, as discussed in
[6], which practically leads to possible negative payoft for Sp.

TABLE 2: Boxed Pigs model, as in [9].

Strategies Dominant pig (Dp)
Press (P) Don't press (DP)
Subordinate pig (Sp) Press (P) 1.5;3.5 -0.5;6
Don't press (DP)  5; 0.5 0;0

Therefore, in our example the amounts of the payoffs matrix
are somewhat loosely defined as

1.5;45 1,5

( 3,3 0, 0) : M
The solution to the presented game is calculated using the
procedure of Nash equilibrium, using arguments proposed in
[18]. For n-player game in a strategic (matrix, normal) form
G the defined set of players I = {1,...,n}, where “—” stands
for a set of I \ {i}. The utility that a player i realizes in the
game is denoted by u;. The space of pure strategies of player i is
denoted by S;. The Nash equilibrium s* is defined, according

to [19-21], so that
u;(s;,s") 2w (s;s™;), Viel, Vs €8, (2)
The Nash equilibrium thus represents a set of players’ best
responses to their opponents’ strategies. Important theoreti-
cal and behavioural questions about the rationality of players

emerge in practical analogies of such scenarios. Analysts
such as McMillan [9] examined the logic of Dp through the



The Scientific World Journal

Game over!

10.0

(»2)50.0

FIGURE 5: Rational Pigs outcome (Press-Don’t press choices).

analogy with strategic scenarios of a real-life cartel (OPEC),
where Saudi Arabia assumed the role of the dominant glutton.
In the repetitive scenario of this game, the existence of mixed
Nash equilibria is possible, with the coresponding rationality
of choosing probabilities (frequencies) of strategies. We
anticipate this game as a one-stage game.

Since model (1) relativizes the cost of effort regarding
pressing the levers in the game scenario, along with the
existing solution to the game (DP, P) (Table 2), in accordance
with (2), there is another Nash equilibrium for the two
strategic choices (P, DP). In order to perform the simulation,
we transform the payofts matrix in the form of (multiplied)

30,30 0,0 (3)

<15, 45 10, 50)
Furtherhermore, in the game shown in (3) we find two
pure Nash equilibria: NE1 for strategies (DP, P) with payoffs
u(NE1) = (30, 30) and NE2 for strategies (P, DP) with payofts
u(NE2) = (10, 50).

The outcome of the simulation for players’ choices (P, DP),
performed with the aid of autogenerator and with specific
attributes of players Sp and Dp (v;, v,, 5, s,) given in Table 4,
is shown in Figure 5. The set of payoffs in matrix (3) above
is achieved in simulations, with the attributes of the two
gluttons defined as in Table 4.

5. Rational Pigs Game Extended (RPGE)

Although the Rational Pigs framework provides a specific
insight into decision-making dilemmas and allows for con-
sideration of the rationality of strategic interaction between
two participants, for the purpose of processing scenarios
with a higher complexity we created a version of the game
entitled “The Rational Pigs GameExtended” (RPGE). Anal-
yses of rationality overtly linked to the RPG scenario have
been recorded with regard to issues related to investment
and innovation supporting as well as artificial intelligence
concepts, in [22-24]. The RPGE framework is supposed to
contribute to the acquisition of knowledge regarding the
topics listed.

The game is enriched by an additional glutton—“tramp,’
which is always positioned in the middle of the cage at the
beginning of the game. The original frame is thus changed to
include the following new features:

(a) in the larger cage there are two feeding mechanisms
situated opposite each other as well as two levers;

(b) in the game there are already more than two gluttons,
so the extended primary scenario considers the inter-
action among three (3) gluttons;

(c) the gluttons are described in terms of the speed
of movement, the speed of feeding (proportional to
size), and their position;

(d) the two gluttons are basically static, located near their
respective levers and feeders, and can press the lever;

(e) the small glutton moves faster than the large one;

(f) one (new) glutton can be denoted as a “tramp,” being
positioned approximately in the middle of the cage, at
an equal distance from both sources of food; he moves
at a high speed while his size (speed of feeding) varies
for the purpose of the experiment;

(g) the new glutton has no ability to press a lever that
releases food into the cage, but when feeding areas are
opened, he goes to pick up his portion;

(h) in the case that both feeding areas T1 and T2 are
opened, the new glutton will hesitate for a while
before heading to one end of the cage for food
(choosing either left (T1) or right (T2)).

In the simulation performance, the available strategies in
the formulated context of the game actually contain two
steps: choice (P or DP) and moving towards the source of
food. The motion itself is unified with the first decision.
Regarding the third player, we discuss his movement (to
the left or to the right) as his entire strategy. Although in
the case of participation of three players the definition of
Nash equilibrium becomes more demanding, the question
of participants’ rational behavior is even more prominent.
Namely, players who achieved two Nash equilibria in a set
that does not include a third glutton now need to review
their previous optimally stable outcomes. A part of the earlier
achievements of the two players Sp and Dp (portions of food
labeled € and &) are transferred to the “tramp” Tp (Table 3).
The values of € and § depend on the Tp attributes, that is, the
speed of movement, speed of feeding (size), delay in reaction
(in case of [open, open] situation), and the opening moves
played by Sp and Dp.

We maintain that the conditions for a Nash equilibrium
game in a two-player scenario will remain the same in the
three-player game. If we assume that ¢, €*, §, 8* > 0, as a
condition for the stability of equilibrium NE1 = (DP, P, L), we
obtain

30—¢ > 15— ¢ 30-68, > 0. (4)

Based on the above, the three-player equilibrium is NEI =
(DP, P, L), with payofts (30—¢,;30—-6,, & +9,). Furthermore,
the required conditions associated with Nash equilibrium

NR2 = (P, DP, R)
50 -6, >45-85; 10-¢ >0 (5)

which defines another Nash equilibrium for the three-player
scenario, with strategies NE2 = (P, DP, R) and payofts (10 —¢,,
50 — 8, &, +3,).



The Scientific World Journal

TABLE 3: Rational Pigs Extended (generally applicable to three players).

Tramp Tp: left (T1) Strategies Dominant pig Dp ’
Press Don't press
Subordinate pig Sp Press 15-¢7545-0,7¢" +9, 10; 50; 0
Don't press 30 —;30-0;;¢ +0; 0;0;0

Tramp Tp: right (T2) Strategies Dominant pig Dp

Press Don't press
Subordinate pig Sp P’ress 15-6"45-0,"56" +9, 10 = &; 50 = 85 6, + 6,

Don't press 30; 30; 0 0;0;0

TABLE 4: Players’ attributes resulting with NE destabilization.

Attributes P1(Sp) P2 (Dp) P3 (Tp)
Speed (v) 3v, Yo 6v,
Size (I) Iy 31, 21,
Delay (T'); at (open, open) 0 0 10T,
Game over!

@ 5.328

)35.358

@19.314

FIGURE 6: Rational Pigs Extended outcomes for (Press, Don't press,
R) choices.

6. Implementation of Rational Pigs Extended
Using Autogenerator

After creating a three-player model, we performed several
experiments varying the attributes of the Tp player. In
conditions where Tp is comparable to Sp in terms of, for
instance, his size, regardless of his speed, the logic of the
game for the two main players does not change, and the
solutions will remain in the two sets of strategies, as in the
previous scenario. However, we found the Tp attributes which
ensured the values of parameters ¢, § that disturbed the NE2
equilibrium.

The outcome and realized payofts for simulation with
the delay parameter of 10 time units due to hesitation of
Tp, for choices of strategies (P, DP, and R), and with other
relevant data as in Table 4, are shown in Figure 6. In this
case, analyzing conditions (5), it can be concluded that, for a
sufficiently large (and fast) Tp player, the values of expressions
(50 — 8,) and (45 — 85 ) became comparable, which caused a
destabilization of Nash equilibrium NE2.

Payoft to the Dp player (Table 5) for particular chosen
strategies (P, DP, and R) becomes comparable to or smaller
than the payoff to outputs (P, P, and R) and (P, P, and L).
Furthermore, for Dp strategy P is closed now to dominate
over his strategy DP. In such a situation, the Dp player has
doubts regarding employing his DP strategy since the optimal
playing recommendations for the gluttons have changed.

Researching strategic decisions and achievements of play-
ers in borderline situations (Table 5) satisfying conditions
(5) presents a challenge because it focuses on real players’
rationality and possible behaviour in simulated conditions.

7. Discussion

We showed that autogenerator can be successfully used for
the purposes of modelling and simulating (game theory)
strategic games. In our example, autogenerator is imple-
mented in a “Rational Pigs” strategic game and its created
derivative entitled “RPG Extended”” In the research presented
in this paper we realized the RPG model and enriched
it by introducing a new player whose attributes may lead
toward destabilization of the Nash equilibrium. This means
that rationality previously found in the framework of a two-
person game is no longer applicable.

Furthermore, this innovation enables us to consider
strategic situations of a higher level of complexity, which are
more appropriate for describing certain real-life scenarios.
Therefore, future research may be focused on laboratory
testing of the behavior of players in the roles of gluttons
regarding their understanding of the change of circumstances
resulting from the introduction of a “tramp,” their speed of
response in terms of changing their preferred strategies, and
so forth. This approach also enables the analysis of complex
scenarios of RPGE at a given stage as well as the dynamics
of the game by allowing for the same or similar scenario to
be simulated or repeated over time. The game mechanism
is prepared for laboratory testing by iterating the selected
game scenario an arbitrary number of times, which includes
both game variants (for two or three players). In this case
game repetition is executed with the support of a central
coordinator, thus enabling for the extensive form game to be
performed that belongs to the class of finitely repeated games.



The Scientific World Journal

TABLE 5: Rational Pigs Extended—payoffs according to the simulation with defined parameters (Table 4).

Tramp Tp (L)/(R) Strategies Dominant pig Dp
Press Don’t press
1,7 350 133(L)
. . Press
Subordinate pig Sp 120 354 127 (R) 53 354 193 (R)
Don't press 20,6 1,4 38,0(L) 0,050

These games are generated by repetitions of a one-stage
basic game, as described in detail in several sources, such as
[10, 21, 25] and others. Participation in a repeated (iterated)
game may result in higher payofts than those achieved in a
basic one-stage game [26]. The strategic profile of a particular
player in a repeated game is placed in the so-called subgame
perfect equilibrium, provided that the player has chosen a
strategy of equilibrium in every contained subgame [27, 28].
According to the first Folk theorem proposed by Friedman
in [29], any payoff in a one-stage game that dominates the
Nash equilibrium, according to Pareto dominance, can be
supported in a subgame perfect equilibrium for rational and
sufficiently patient players. A subgame perfect equilibrium
of a discounted repeated game with perfect monitoring
is possible for a certain strategic profile, even if the cor-
responding payoft (P) does not dominate any one-stage
NE, as stated by Fudenberg and Maskin [30] and further
interpreted in [10, 25]. Nevertheless, such a scenario requires
a high coordination level and adherence to an elaborate
system of punishment of deviant players, among others [10,
31]. The deficiency of game theory concepts is that they
generally allow for the existence of alarge number of subgame
perfect Nash equilibria, failing to achieve convergence, that
is, targeting a small(er) number of solutions in repeated
games. When predicting strategic behavior is concerned,
gaming in laboratory conditions highlights the issue of
participants’ consistency and their motivation with regard to
the actual perception of benefits on the one hand and the
achievement of not-so-important points in a game on the
other. It is noteworthy that some reports of the outcomes
of experimental games (e.g., [32]) reveal significantly better
results achieved by certain players in playing repeated games
compared to theory-based expectations.

The players’ interactions in a multistage game are inter-
esting from several other perspectives, one of which is the
scenario in which an individual glutton has limited infor-
mation about his opponents, that is, no accurate knowledge
of their relative speed, size, and other parameters. As a
result, the behavior of players can be examined through the
prism of games with incomplete information, as suggested by
Gibbons [25]. By analyzing the players’ behavior over time in
multistage (RPG) games, we could focus on their learning and
possible progress toward achieving better average payofts.
In conditions of varying degrees of the players’ awareness,
as previously discussed in the works of Camerer et al. in
[19, 33], indicators of learning (consideration, commitment,
and change) contained in the so-called EWA (experience-
weighted attraction) model can be identified. Alternative

attempts of establishing learning styles and learning suc-
cessfulness using experimental methods, conducted in cor-
respondence with the EWA model, were reported by some
authors, such as [34].

8. Conclusions

The paper discusses the usage of autogenerator in the domain
of computer simulation. It has been verified in the example of
the strategic game RPG (E). The presented approach offers
new possibilities in comparison with classic approaches of
simulation of (live) agents’ interactions. There are several
benefits provided by the usage of autogenerator in strategic
game simulations. Autogenerator introduces flexibility in
specifying game parameters before the game is started, as
well as after the game has been running for some time.
Furthermore, autogenerator enables the performance of an
arbitrary number of game iterations belonging to the same
game scenario with monitoring of players’ behavior. All
changes in the game are saved in Specification, including
the state at the end of the game. At the same time, all
changes in Specification have their impact on dynamic code
generation and, consequently, the execution of the game. For
this purpose, the original autogenerator model was extended
to enable Specification updates. This flexibility includes the
specification of game parameters, which consist of variations
in the number of simultaneous players and their features and
game objects and their attributes as well as some general game
features.

The aforementioned features of the autogenerator-based
simulation system were used in the implementation of the
“Rational Pigs” game (RPG). We showed that the values of
players’ payoffs previously recorded in the literature, such as
those by McMillan [9] or Rasmusen [6], can be obtained
if their players™ attributes are found at appropriate values.
In addition, by introducing a third glutton, “the tramp,”
we created a new scenario entitled “RPG Extended” that
can change the points of Nash equilibrium. This finding
highlights some new issues in conceptualizing the rational
behavior of players and opens up a possibility of further
theoretical and experimental research, especially into related
repetitive strategic scenarios.

Further benefits of such implementation of autogenerator
may lie in simulation scenarios similar to RPGE found
in various interactive organizations as well as the corpo-
rate sector, as emerging “serious games,” according to [35].
Possible examples include using the strategic management



10

concept of “competitive dynamics,” where the firm’s action
or strategy is understood as a specific visible competitive
move which, according to Chen [36], is initiated with the
intention of enhancing the relative competitive positions.
In addition, considering the value of the gaming approach
within contemporary learning theories [35], including the
theory of Cognitive Apprenticeship [37], and given the defini-
tion of effective learning, gaming as an activity could provide
support in solving real-world problems in a relevant context
and also facilitate the acquisition of required specific skills.
In this way, it is possible to further develop the approaches
presented in this paper in developing learning solutions for
the corporate sector.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

(1] R. R. Hill, L. E. Champagne, and J. C. Price, “Using agent-
based simulation and game theory to examine the WWII bay
of biscay U-boat campaign,” The Journal of Defense Modeling &
Simulation, vol. 1, no. 2, pp. 99-109, 2004.

[2] D. Harris and S. Bullock, “Enhancing game theory with coevo-
lutionary simulation models of honest signaling,” in Proceedings
of the Congress on Evolutionary Computation, vol. 2, pp. 1594-
1599, 2002.

[3] T. Moyaux, B. Chaib-draa, and S. D’Amours, “Spreadsheet
vs. multiagent based simulations: the case of supply chains,’
International Journal of Simulation and Process Modelling, vol.
4,no0. 2, pp. 89-105, 2008.

[4] E. Kok, Adaptive reinforcement learning agents in RTS games
[M.S. thesis number INF/SCR-07-73], University Utrecht,
Utrecht, The Netherlands, 2008.

[5] M. Hyksova, “Several milestones in the history of game theory;,”
in Jubilden—Chance oder Plage? VII. Osterreichisches Symposion
zur Geschichte der Mathematik, pp. 49-56, Technische Univer-
sitit Wien, Vienna, Austria, 2004.

[6] E.Rasmusen, Games and Information, An Introduction to Game
Theory, Blackwell Publishing, 3rd edition, 2001.

[7] V. J. Tremblay and C. H. Tremblay, New Perspectives on
Industrial Organization: With Contributions from Behavioral
Economics and Game Theory, Springer, 2012.

[8] J. Harrington, Games, Strategies and Decision Making, Worth,
New York, NY, USA, Ist edition, 2009.

[9] J. McMillan, Games, Strategies ¢ Managers, How Managers Can
Use Game Theory to Make Better Business Decisions, Oxford
University Press, 1992.

[10] H. Gintis, Game Theory Evolving, A Problem-Centred Intro-
duction to Modeling Strategic Interaction, Princeton University
Press, 2000.

[11] K. Czarnecki and U. W. Eisenecker, Generative Programming:
Methods, Techniques, and Applications, Addison-Wesley, 2000.

[12] I. Magdaleni¢, D. Radosevi¢, and T. Orehovacki, “Autogen-
erator: generation and execution of programming code on
demand,” Expert Systems with Applications, vol. 40, no. 8, pp.
2845-2857, 2013.

The Scientific World Journal

[13] D. Rados$evi¢ and I. Magdaleni¢, “Source code generator based
on dynamic frames,” Journal of Information and Organizational
Sciences, vol. 35, p. 1, 2011.

[14] H. Zhang and S. Jarzabek, “XVCL: a mechanism for handling
variants in software product lines;” Science of Computer Pro-
gramming, vol. 53, no. 3, pp- 381-407, 2004.

[15] P. G. Bassett, “The case for frame-based software engineering,
IEEE Software, vol. 24, no. 4, pp. 90-99, 2007.

[16] B. A.Baldwinand G. B. Meese, “Social behaviour in pigs studied
by means of operant conditioning,” Animal Behaviour, vol. 27,
no. 3, pp. 947-957, 1979.

[17] M. B. Stinchcombe, Avaliable from citeseerx.ist.psu.edu, Cite-
seerx, 2002.

[18] J. Nash, “Non-cooperative games,” in Classics in Game Theory,
H. W. Kunh, Ed., pp. 14-26, Princeton University Press, 1997.

[19] C.E Camerer, Behavioral Game Theory—Experiments in Strate-
gic Interaction, Russell Sage Fundation , Princeton University
Press, Princeton, NJ, USA, 2003.

[20] Y. Narahari, Game Theory, Lecture Notes, Indian Institute of
Science, 2012, http://lcm.csa.iisc.ernet.in/gametheory/In/.

[21] L. Phlips, Competition Policy: A Game-Theoretic Perspective,
Cambridge University Press, Cambridge, UK, 1995.

[22] W. Wei, Z. Guanghua, and Z. Lili, “Boxed pigs game analysis on
raw milk resources investment of dairy processing enterprises
in cluster;” in Proceedings of International Conference on Com-
puter Science & Information Technology (IACSIT ’12), vol. 52,
IACSIT Press, Singapore, 2012.

[23] S. Chu and Z. Han, “On choices of innovation strategy of
Chinese pharmaceutical enterprises from perspective of “Wise
Pig Game”,’ International Journal of Business and Management,
vol. 3, no. 4, pp. 69-74, 2008.

[24] X.-Y. Zhang and C.-L. Zhou, “From biological consciousness
to machine consciousness: an approach to make smarter
machines,” International Journal of Automation and Computing,
vol. 10, no. 6, pp- 498-505, 2013.

[25] R. Gibbons, “A Primer in Game Theory;” Harvester Wheatsheaf,
1992.

[26] R. Gardner, Games for Business and Economics, John Wiley &
Sons, New York, NY, USA, 1995.

[27] R.Selten, “Spieltheoretische Behandlung eines Oligopolmodells
mit Nachfragetragheit,” Zeitschrift fiir die gesamte Staatrwis-
senschaft, vol. 121, pp. 301-324, 1965.

[28] G. Owen, Game Theory, Academic Press, New York, NY, USA,
3rd edition, 1995.

[29] J. Friedman, “A non-cooperative equilibrium for supergames,’
Review of Economic Studies, vol. 38, no. 1, pp. 1-12, 1971.

[30] D. Fudenberg and E. Maskin, “The folk theorem in repeated
games with discounting or with incomplete information,”
Econometrica, vol. 54, no. 3, pp. 533-554, 1986.

[31] D. Abreu, P. K. Dutta, and L. Smith, “The folk theorem for
repeated games: a NEU condition,” Econometrica, vol. 62, no.
4, pp. 939-948, 1994.

[32] D. S. Nau, “Lecture notes and schedule: Section 17.6, Game
theory;” http://www.cs.umd.edu/~nau/cmsc421/.

[33] C. E Camerer, T. Ho, and J. Chong, “Sophisticated experience-
weighted attraction learning and strategic teaching in repeated
games,” Journal of Economic Theory, vol. 104, no. 1, pp. 137-188,
2002.

[34] R. Fabac, V. Dusak, and D. Radosevi¢, “Simulation of invest-
ment decision-making—learning at different levels of backward



The Scientific World Journal

(35]

(36]

(37]

information,” in Proceedings of the 32th International Conference
ITI2010, V. Luzar-Stiffler, I. Jarec, and Z. Beki¢, Eds., pp. 611-616,
2010.

L. Donovan, “Research Report: The Use of Serious Games in the
Corporate Sector—A State of the Art Report,” Learnovate Cen-
tre Ireland, December 2012, http://www.learnovatecentre.org/.

M.-]. Chen, “Competitive dynamics research: an insider’s
odyssey,” Asia Pacific Journal of Management, vol. 26, no. 1, pp.
5-25, 2009.

J. S. Brown, A. Collins, and S. Duguid, “Situated cognition and
the culture oflearning,” Educational Researcher, vol. 18, no. 1, pp.
32-42,1989.

1



Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering




