
Dynamic Frames-Based Generation of

Web 2.0 Applications

Tihomir Orehovački, Ivan Magdalenić, and Danijel Radošević

University of Zagreb, Faculty of Organization and Informatics

Pavlinska 2, 42 000 Varaždin

{tihomir.orehovacki, ivan.magdalenic, danijel.radosevic}@foi.hr

Abstract—Frame Technology (FT) and Generative

Programming (GP) are two widely accepted paradigms of

software product lines development. While GP addresses the

automatic generation of source code, FT advocates its adaptation

to diverse reuse contexts. With an aim to utilize benefits of both

approaches, this paper presents the SCT dynamic frames model

that supports the automatic generation of Web 2.0 applications.

The SCT model encompasses three essential components:

Specification (S), which refers to application features,

Configuration (C), which describes application development rules,

and Template (T), which denotes application building blocks.

Owing to its flexibility, readability, interactivity, and other object-

oriented features, the Python scripting language was selected for

the implementation of the generator. In order to demonstrate the

appropriateness and usefulness of the proposed approach, an

example that illustrates the generation of a Web 2.0 application for

database management is provided.

Keywords—Web 2.0 Applications; Dynamic Frames; Generative

Programming

I. INTRODUCTION

The term Web 2.0 refers to a second generation of web
applications which enable users to interact with functionalities
of their interfaces in a desktop-like fashion. Being dynamic in
nature, Web 2.0 applications encourage users to create, share,
publish, organize, and integrate a variety of artefacts thus
contributing to the development of knowledge repositories.
Given that Web 2.0 applications provide support for
asynchronous and synchronous communication among users as
well as collaboration on artefacts, they are commonly referred to
as social web applications. According to Orehovački et al. [13],
the most popular representatives of Web 2.0 applications are
wikis, blogs, microblogs, social bookmarking sites, social
networking sites, mashups, podcasting applications, e-
portfolios, virtual worlds, online office suites, and knowledge
management applications. Considering that evaluation presents
indispensable part of every development process, recent
research effort was focused on modelling their adoption [15],
classification of quality in use metrics [42], measuring quality of
collaborative editors [19][20], evaluating the quality in use of
mind mapping [17][18][20] and diagramming services [17] by
means of both objective and subjective instruments, assessment
of mashup tools [16], as well as evaluation of artefacts [21]
which represent an outcome of their use.

From technical perspective, Web 2.0 applications are
flexible services implemented in client-side Asynchronous
JavaScript and XML (AJAX) frameworks. On the server side,

scripting languages such as PHP, Perl, Python, Ruby, and JSP
are used for delivering content from files and databases to the
client. Despite the fact that Web 2.0 applications are widely used
for both private and business purposes, there is a lack of
comprehensive models and methodologies for their systematic
development. Namely, the majority of current approaches deals
with the model driven interface design (e.g. [11][12]),
development (e.g. [3][10]), and code generation (e.g. [1][4]) of
Rich Internet Applications (RIAs).

Considering the complementariness of different software
development paradigms, a number of authors (e.g. [23], [30])
have merged two or more approaches into one thus yielding
significant synergy effects. With an objective to achieve similar
results in the context of Web 2.0 applications, we integrated
concepts of frame technology (FT) and generative software
development (GSD). Frame technology is a textual pre-
processor which consists of two essential components:
hierarchically organized code templates (frames), and a
specification which contains particular features that can be
adapted to different contexts [5]. On the other hand, generative
software development supports mapping between a set of the
features described by a domain specific language (DSL), and
implementation components with all their possible
combinations [2]. The aim of this paper is to illustrate
appropriateness and usefulness of the use of SCT dynamic
frames [7] in the generation of Web 2.0 applications.

The remainder of the paper is organized as follows.
Overview of current research is provided in the second section.
Features of the SCT generator model and generator design steps
in the context of Web 2.0 applications are explained in the third
section. An example how SCT generator can be employed for
the purpose of developing Web 2.0 applications is illustrated in
the fourth section. Concluding remarks and future research
directions are offered in the last section.

II. BACKGROUND TO RESEARCH

The purpose of this section is to provide a brief review of two
software development paradigms which constitute the
theoretical background to the dynamic frames-based generation
of Web 2.0 applications.

Software product line (SPL) denotes a group of software
products that have a common set of features which meet
stakeholders’ needs [14]. Drawing on frame technology (FT),
frame based software development (FBSD) is focused on
design of generalized and adapted components. FT refers to a

language independent textual pre-processor whose aim is
development of systems which can be easily modified and
consequently reused in a variety of contexts [5]. There are two
essential elements which constitute frame technology: code
templates structured in a hierarchy of modules known as frames
and a specification that consist of particular features specified
by the developer. In the context of software engineering, the
aforementioned infrastructure represents a sound architecture
for deriving SPLs [24]. Grossman and Mah [22] found that the
employment of FT results in a decrease of expenses and time to
market for large software development projects while in the
same time contributes to the increase of reuse levels. These
productivity enhancements motivated Jarzabek and Zhang [26]
to introduce the meta-programming technique called XML-
based Variant Configuration Language (XVCL) that drawing
on Basset’s frames [25] facilitates management of variability in
SPLs. XVCL supports the decomposition of programs into
generic and adaptable meta-components known as x-frames
which as XML files represent domain knowledge in the form of
SPL artefacts. An x-framework is a normalized layered
hierarchical structure composed of x-frames that allows
handling variants at different granularity levels. A
configuration of a particular SPL member is managed by the
topmost x-frame which is called the specification frame (SPC).
Starting with the SPC call, the XVCL processor goes through
an x-framework, interprets XML tags in visited x-frames and
by conducting necessary adaptations assembles components of
specific SPL members. Taking into account advantages of
XVCL with the respect to the reusability improvement, its
concepts have been thoroughly evaluated in the context of
databases [27], fault tolerant architectures [28], computer aided
dispatch domain [29], etc.

The central role in generative software development (GSD)
plays domain model which deals with mapping between
problem space and solution space [2]. Problem space denotes a
set of features of a SPL member that are described by means of
the DSL. Implementation-based abstractions that constitute the
specification of a SPL member are referred to as solution space.
The mapping between the set forth spaces is carried out with
the use of generator which calls a specification and eventually
result in a corresponding implementation. Apart from XVCL,
there are some other techniques that are also used for the
purpose of generating software artefacts. One of them is
GenVoca [31], a composition methodology meant for
generating hierarchical SPL families. Fundamental features
related to GenVoca are virtual machines, layers, realms, type
equations, and a grammar. Virtual machines represent a set of
methods, classes, and their objects that are employed for the
implementation of SPL functionalities. An implementation of
particular virtual machine is called layer. Realm is a set of
layers that implement the same virtual machine. Each layer
imports interface of the realm whose parameters it contains and
exports the virtual machine of the realm it belongs to. Layer that
imports and exports the same virtual machine is labeled as
symmetric layer. The objective of layers is to encapsulate
transformation that maps objects and operations between virtual
machines. The structure composed of layers that are employed
for modeling a particular software system is called a type
equation. Realms together with their layer specify a grammar in
which particular SPL member has a role of a sentence.

 Current research related to the practical use of generators
can be classified into several groups. The first group is focused
on generating code snippets in a variety of programming
languages that range from Python [39] and Java [6][8] to PHP
[9]. The aim of the second group of generators is design of non-
code artefacts such as graphical interface [38], programming
assignments [36], text [37], and 3D scenes [41]. The last group
is composed of generators which are implemented in scripting
programming languages such as Open PROMOL [34] and
CodeWorker [35]. While Open PROMOL deals with specifying
program modifications of a target language, CodeWorker is
meant for both parsing of arbitrary grammars and source code
generation. The generator presented in this paper adds to the
extant body of knowledge which deals with generation of code
artefacts. Details on features of generation architecture that was
employed for that purpose in the context of Web 2.0
applications are provided in the following section.

III. GENERATION OF WEB 2.0 APPLICATION

The SCT generator model is based on dynamic frames [7]
and can be used in the generation of a wide variety of
applications. The SCT generator model defines the generator of
source code from three core elements: Specification (S),
Configuration (C) and Templates (T). Specification contains
features of the generated application in the form of attribute-
value pairs. Templates contain source code in a target
programming language together with connections (replacing
marks for the insertion of variable code parts). Configuration
defines the connection rules between Specification and
Templates. All three model elements together constitute the SCT
frame.

A particular SCT frame produces source code that could be
either stored in a specific data file or included in another SCT
frame. The basic idea of the generation process is shown in
Figure 1. The initial SCT frame contains the initial source code
template that includes connections. The generator of the source
code creates a new SCT frame for each connection. While the
source code of SCT frames located deeper in the hierarchy is
included as the integral part of its superior SCT frame, the source
code of the initial SCT frame is stored in a data file.

Since an average application contains more data files, the
SCT model implies the existence of a Handler. It represents a
part of the SCT source code generator that aims to make the
generator scalable in a way that it can produce more pieces of
program code (e.g. program files) from the same set of
Specification, Configuration and Templates. The SCT dynamic
frames model enables the generation of various program units
(e.g. files, classes, functions etc.) from the same Specification.
Moreover, it enables the generation of code in a variety of
programming languages (e.g. JavaScript, PHP, XML, Python,
Java, etc.) and is consequently suitable for the generation of Web
2.0 applications. The generated code can be stored in program
files for later execution as well as in variables for immediate
execution [32] [32].

S C T S C T

#co
nn1# #connN#

.
.

S C T S C T

S C T

SCT source code generator

Handler

S C T S C T

#co
nn1# #connN#

.
.

S C T S C T

S C T
- initial frames

- dynamically

created frames

Fig. 1. The generation process

Web 2.0 applications are specific since they use different
technologies in an integrated manner. The flexibility of the SCT
generator enables implementation of several technologies in the
same application. This is achieved with cautious design of
Specification, Templates and Configuration of the SCT
generator.

Model which reflects development process of Web 2.0
application by means of SCT generator is illustrated in Figure 2.
The first step is to identify Web 2.0 services and build one or
several prototypes for each service. Based on experience
obtained during development of prototypes, a set of templates is
developed for each service. Those templates are input into SCT
generator. Different applications have different set of services
which is defined in Application specification. Each application
has list of web services and other important data listed in its
Application specification. How templates are combined
together, based on Application specification, is defined in
Application configuration.

Web 2.0
Service 1
prototype

Web 2.0
Service 2
prototype

Web 2.0
Service n
prototype

...

Templates
service 1

Templates
service 2

Templates
Service n

Application
specification

Application
configuration

Application
templates

SCT generator

Client side
source code

Server side
source code

SCT generator handler

Web 2.0
Service 1

Web 2.0
Service 2

Web 2.0
Service n

...

Fig. 2. Model of building Web 2.0 applications using the SCT generator

The SCT Handler generates more data files which contain
source code and implement both server and client side of Web
2.0 application. Since Web 2.0 application employs different
technologies, it is a challenge to make such templates that can

1 The example is available at gpml.foi.hr/SCT_Python_Ajax

be easily manageable and reusable. In that respect, the SCT
generator model offers management of the whole set of code
templates via relatively small Configuration.

The process of building new generators begins with
application prototype that is decomposed into SCT model
elements through several steps. The SCT generator applies these
elements in automatic assembling of different application
variants. Steps in the design of a generator of Web 2.0
application are as follows [40]:

0. Prerequisite. The prerequisite for building the SCT
generator is the application prototype in a form of a source code.

1. Selection of new main templates and output types. The
main templates are specified in the initial part of Configuration
and define the type of code to be generated, e.g.:

#1#,,index.template - entry HTML page

2. Creating of Specification. Specification consists of
attributes and their values. The hierarchy of attributes is
specified by '+' sign, e.g.:

field_combo:id_course

+field_display:Course - subordinated attribute

3. Delineation of variable program parts. Variable program
parts depend on Specification, so they will be later replaced with
connections.

4. Flexibilization of prototype. Variable program parts are
being replaced by connections (in #-es).

5. Adding new rule to Configuration. The configuration rule
specifies all three elements of the SCT model: connection,
specification attribute and used code template, respectively e.g.:

#links#,title,links.template

6. Building of code templates that are main constituent
artefacts of generated applications.

7. Generating, testing and adjusting in a generative
development process.

An outcome of the development process that begins with an

application prototype is a generator that can be used in

automatic design of different application variants. Obtained

SCT model elements (Specification, Configuration and

Templates) can be used in the further development of

generators as well as applications.

As shown in Figure 3, the development process of particular

Web 2.0 application can be illustrated with spiral model that

was originally proposed by Boehm [43].

IV. EXAMPLE OF GENERATION

 The example1 includes a SCT based generator, implemented
in Python, together with generated Web 2.0 application (also in
Python; Ajax was used for user interface and PostgreSQL for
database implementation).

0. APPLICATION

PROTOTYPE

1. Main templates

and output types

2. Creation of

Specification

3. Identifying of

variable program

parts

4. Relaxing of

prototype
5. Adding new rule

to Configuration

6. Building of new

code templates

7. Generating,

testing and

adjusting

GENERATOR

+

APPLICATION

VARIANTS

Fig. 3. Spiral generator/application development [40]

 Specification of the given instance contains three output
types:

OUTPUT:out1 - used for index page

OUTPUT:output - CGI scripts (Python)

OUTPUT:output_html - HTML forms

Each output type refers to one or more output files that will
be generated. For instance, there are two files that are going to
be generated from the following specification group:

output:output/students.cgi - CGI script

output_html:output/students_form.html - HTML form

table:ajax_students - database table

connection:exams - link to another DB table

+connection_field:student_id - subordinated attributes

+connection_display:Exams to link

title:students - group name

+title_display:Students - text to be displayed

primary_key:student_id - DB table primary key

field_number:student_id - table attribute+type

+field_display:Student id - text to be displayed

field_text:surname_name

+field_display:Surname and name . . .

field_number:year_of_enrollment

+field_display:Year of enrollment . . .

field_number:year_of_study

+field_display:Year of study

Configuration contains rules for assembling software from
Specification and Templates. The initial part of Configuration
specifies the initial code templates that correspond to output
types from Specification:

#1#,,index.template - index page

#2#,,script.template - CGI scripts

#3#,,form.template - HTML forms

Other lines of Configuration contain two- or three-element
groups, e.g.:

#table#,table - link, attribute

#title_field#,title,title.template - link, attribute,

 template

The two-element group specifies direct replacement of the
position of variable in Templates with value of attribute from
Specification. The three-element group specifies that code
template has to be used as many times as it occurs in
Specification. Each code template employs connections (usually
words in '#'-es) in order to specify variable parts that are going
to be generated. The following example of a template is used in
the generation of input/edit forms:

<form id="myForm" action="" method="POST" >

<input type="hidden" name="action" value="!operation!">

#fields_on_form#

<td><input type='submit' name="Submit"

value='Send'onclick="Perform2('#fields_getelementbyid#'

,'#title#.cgi?action=!operation!','R0')"></td>

<td> </td>

</form>

The example utilizes Ajax to route the output of the CGI
script to a particular HTML element marked by id (here: 'R0').
As shown in Figure 4, this feature enables editing of particular
row in database table, without the need of refreshing the whole
web page.

The aim of the SCT generator model is to achieve high

reusability of features (attributes with their values) defined in

Specification. These features can be distributed through

connections on many different places in diverse code templates,

as shown in Table 1.

Fig. 4. Editing of particular row in database table

TABLE I. DISTRIBUTION OF SPECIFICATION FEATURES IN EXAMPLE

APPLICATION

Attribute

Total

occurences in

Specification

Total

occurrences in

generated

code

Number of

files where the

value occurs

application 1 2 1

table 3 90 3

title 3 52 3

title_display 3 15 3

field_number 6 397 3

field_combo 2 70 1

The multi-distribution of specification features could be

used in application updating. This can be performed by

changing the Specification, which enables new features of

applications inside the problem domain proposed by

Configuration. Any modification in Templates changes the way

Specification attribute values are used, including the

programming language. Any update of Configuration changes

the way the generator builds the program code, respectively.

The introduction of a new line in Configuration could enable

the use of a new Specification attribute and a new code

template. The purpose of the set forth is to avoid any later

modifications of the generated code.

V. CONCLUDING REMARKS

This paper illustrated the use of dynamic frames generator
model in the development of Web 2.0 applications. There are
numerous benefits of the proposed approach. The first one is the
improvement of the development process productivity that is the
outcome of reusability of program artefacts. The set forth
productivity reflects in terms of enhanced efficiency in
development of software product lines, as well as facilitated
features specification at higher level of abstraction. The second
one is simplified application update which results from
definition of application in a higher abstraction language used
by SCT generator. Inclusion of new features in application is
performed by adding new definitions in application
specification. The third one is the customization of application
to the specific needs of particular user. Considering that network
effects, perpetual beta, and lightweight user interfaces,
respectively are essential design patterns of Web 2.0
applications, the proposed approach supports the user-centered
development of software product line members.

Our future work will be focused on the employment of
dynamic frames based generators in the development of some
specific types of Web 2.0 applications such as mashups. More
specifically, our research efforts will deal with interplay of
different generator implementations and novel web
technologies.

REFERENCES

[1] A. Bozzon and S. Comai, “Conceptual Modeling and Code Generation for
Rich Internet Applications”, Proceedings of the 6th International
Conference on Web Engineering, pp. 13-18, 2006.

[2] K. Czarnecki, “Overview of generative software development”, in
Unconventional Programming Paradigms, Lecture Notes in Computer
Science, vol. 3566, J.-P. Banâtre, P. Fradet, J.-L. Giavitto and O. Michel,
Eds. Le Mont Saint Michel: Springer, 2004, pp. 326-341.

[3] J.M. Hermida, S. Meliá, A. Montoyo and J. Gómez, “Developing Rich
Internet Applications as Social Sites on the Semantic Web: A Model-
Driven Approach”, International Journal of Systems and Service-Oriented
Engineering, vol. 2, no. 4, pp. 21-41, 2011.

[4] M. Linaje, J.C. Preciado, R. Morales-Chaparro, R. Rodríguez-Echeverría
and F. Sánchez-Figueroa, “Automatic Generation of RIAs Using RUX-
Tool and Webratio”, in Web Engineering, Lecture Notes in Computer
Science, vol. 5648, M. Gaedke, M. Grossniklaus and O. Díaz, Eds. San
Sebastian: Springer, 2009, pp. 501-504.

[5] N. Loughran, A. Rashid, W. Zhang and S. Jarzabek, “Supporting Product
Line Evolution with Framed Aspects”, in Workshop on Aspects,
Components and Patterns for Infrastructure Software, 2004,
<http://www.comp.lancs.ac.uk/computing/aod/papers/SPL_ACP4IS200
4.pdf>.

[6] I. Magdalenić, D. Radošević and Z. Skočir, “Dynamic Generation of Web
Services for Data Retrieval Using Ontology”, Informatica, vol. 20, no. 3,
pp. 397-416, 2009.

[7] D. Radošević and I. Magdalenić, ”Source Code Generator Based on
Dynamic Frames”, Journal of Information and Organizational Sciences,
vol. 35, no. 1, pp. 73-91, 2011.

[8] D. Radošević, M. Konecki and T. Orehovački, “Java Applications
Development Based on Component and Metacomponent Approach”,
Journal of Information and Organizational Sciences, vol. 32, no. 2, pp.
137-147, 2008.

[9] D. Radošević, T. Orehovački and M. Konecki, “PHP Scripts Generator
for Remote Database Administration based on C++ Generative Objects”,
Proceedings of the 30th MIPRO Jubilee International Convention on
Intelligent Systems, pp. 167-172, 2007.

[10] B. Stearn, “XULRunner: A New Approach for Developing Rich Internet
Applications”, Internet Computing, vol. 11, no. 3, pp. 67-73, 2007.

[11] M. Urbieta, G. Rossi, J. Ginzburg and D. Schwabe, “Designing the
Interface of Rich Internet Applications”, Proceedings of the 5th Latin
American Web Conference (LA-WEB), pp. 144-153, 2007.

[12] F. Valverde and O. Pastor, “Applying Interaction Patterns: Towards a
Model-Driven Approach for Rich Internet Applications Development”,
Proceedings of Workshop on Web-oriented Software Technology
(IWWOST), pp. 13-18, 2008.

[13] T. Orehovački, G. Bubaš and A. Kovačić, “Taxonomy of Web 2.0
Applications with Educational Potential”, in Transformation in Teaching:
Social Media Strategies in Higher Education, C. Cheal, J. Coughlin abd
S. Moore, Eds. Santa Rosa: Informing Science Press, 2012, pp. 43-72.

[14] P. Clements and L. Northrop, Software product lines: Practices and
patterns. Boston: Addison-Wesley, 2002.

[15] T. Orehovački and S. Babić, “Predicting Students' Continuance Intention
Related to the Use of Collaborative Web 2.0 Applications”, Proceedings
of the 23rd International Conference on Information Systems
Development (ISD), pp. 112-122, 2014.

[16] T. Orehovački and T. Granollers, “Subjective and Objective Assessment
of Mashup Tools”, in Design, User Experience, and Usability - Theories,
Methods, and Tools for Designing the User Experience, Lecture Notes in
Computer Science, vol. 8517, A. Marcus, Ed. Heraklion: Springer, 2014,
pp. 340-351.

[17] T. Orehovački, A. Granić and D. Kermek, “Evaluating the Perceived and
Estimated Quality in Use of Web 2.0 Applications”, Journal of Systems
and Software, vol. 86, no. 12, pp. 3039-3059, 2013.

[18] T. Orehovački, A. Granić and D. Kermek, “Exploring the Quality in Use
of Web 2.0 Applications: The Case of Mind Mapping Services”, in
Current Trends in Web Engineering, Lecture Notes in Computer Science,
vol. 7059, A. Harth and N. Koch, Eds. Paphos: Springer, 2011, pp. 266-
277.

[19] T. Orehovački, “Perceived Quality of Cloud Based Applications for
Collaborative Writing”, in Information Systems Development – Business
Systems and Services: Modeling and Development, J. Pokorny, V. Repa,
K. Richta, W. Wojtkowski, H. Linger, C. Barry and M. Lang, Eds. Prague:
Springer, 2010, pp. 575-586.

[20] T. Orehovački, S. Babić and M. Jadrić, “Exploring the Validity of an
Instrument to Measure the Perceived Quality in Use of Web 2.0
Applications with Educational Potential”, in Learning and Collaboration
Technologies - Designing and Developing Novel Learning Experiences,
Lecture Notes in Computer Science, vol. 8523, P. Zaphiris, and A.
Ioannou, Eds. Heraklion: Springer, 2014, pp. 192-203.

[21] T. Orehovački and N. Žajdela Hrustek, “Development and Validation of
an Instrument to Measure the Usability of Educational Artifacts Created
with Web 2.0 Applications”, in Design, User Experience, and Usability -
Design Philosophy, Methods, and Tools, Lecture Notes in Computer
Science, vol. 8012, A. Marcus, Ed. Las Vegas: Springer, 2013, pp. 369-
378.

[22] I. Grossman and M. Mah, “Independent research study of software reuse
using frame technology”, Technical Report, QSM Associates, 1994.

[23] L. Fuentes, C. Nebrera and P. Sánchez, “Feature-oriented model-driven
software product lines: the TENTE approach”, Proceedings of the forum
of the 21st international conference on advanced information systems
(CAiSE), pp. 67-72, 2009.

[24] P.G. Bassett, “The case for frame-based software engineering”, IEEE
Software, vol. 24, no. 4, pp. 90-99, 2007.

[25] P.G. Bassett and E. Yourdon, Framing software reuse – lessons from real
world. Upper Saddle River: Prentice Hall, 1997.

[26] S. Jarzabek and H. Zhang, “XML-based method and tool for handling
variant requirements in domain models”, Proceedings of the 5th IEEE
international symposium on requirements engineering, pp. 166-173,
2001.

[27] S. Guo, L. Tang and W. Xu, “XVCL – an annotative approach to feature-
oriented programming”, Proceedings of the 2010 international conference
on computational intelligence and software engineering, pp. 1-5, 2010.

[28] L. Yuan, J. Song Dong and J. Sun, “Modeling and customization of fault
tolerant architecture using object-Z/XVCL”, Proceedings of the 13th Asia
Pacific software engineering conference, pp. 209-216, 2006.

[29] H. Zhang and S. Jarzabek, “XVCL: a mechanism for handling variants in
software product lines”, Science of Computer Programming, vol. 53, no.
3, pp. 381–407, 2004.

[30] I. Groher and M. Voelter, “Aspect-oriented model-driven software
product line engineering”, in Transactions on Aspect-Oriented Software
Development VI, Lecture Notes in Computer Science, vol. 5560, S. Katz,
H. Ossher, R. France and J-M. Jézéquel, Eds. Heidelberg: Springer, 2009,
pp. 111-152.

[31] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci and M. Sirkin,
“The GenVoca model of software-system generators”, IEEE Software,
vol. 11, no. 5, pp. 89-94, 1994.

[32] R. Fabac, D. Radošević and I. Magdalenić, “Autogenerator-Based
Modelling Framework for Development of Strategic Games Simulations:
Rational Pigs Game Extended”, The Scientific World Journal, 2014,
<dx.doi.org/10.1155/2014/158679>.

[33] I. Magdalenić, D. Radošević and T. Orehovački, “Autogenerator:
Generation and Execution of Programming Code on Demand”, Expert
Systems with Applications, vol. 40, no. 8, pp. 2845-2857, 2013.

[34] V. Štuikys and R. Damaševičius, “Scripting language open PROMOL and
its processor”, Informatica, vol. 11, no. 1, 71–86, 2000.

[35] C. Lemaire, “CodeWorker parsing tool and code generator – user’s guide
& reference manual, release 4.5.4.”, 2010,
<http://www.codeworker.org/CodeWorker.pdf>.

[36] D. Radošević, T. Orehovački and Z. Stapić, “Automatic on-line
generation of student’s exercises in teaching programming”, Proceedings
of the 21st Central European conference on information and intelligent
systems, pp. 87-93, 2010.

[37] J. Müller and U.W. Eisenecker, “The applicability of common generative
techniques for textual non-code artifact generation. In Proceedings of the
workshop on modularization, composition, and generative techniques for
product line engineering, 2008, <http://www.infosun.fim.uni-
passau.de/spl/apel/McGPLE2008/papers/Paper8.pdf>.

[38] M. Schlee and J. Vanderdonckt, “Generative programming of graphical
user interfaces”, Proceedings of the working conference on advanced
visual interfaces, pp. 403-406, 2004.

[39] D. Radošević and I. Magdalenić, “Python implementation of source code
generator based on dynamic frames”, Proceedings of the 34th
International Convention on Information and Communication
Technology, Electronics and Microelectronics, pp. 369-374, 2011.

[40] D. Radošević, I. Magdalenić and T. Orehovački, “Building Process of
SCT Generators”, Proceedings of the 36th International Convention on
Information and Communication Technology, Electronics and
Microelectronics, pp. 1037-1042, 2013.

[41] A. Kvesić, D. Radošević and T. Orehovački, “Using SCT Generator and
Unity in Automatic Generation of 3D Scenes and Applications”,
Proceedings of the 25th Central European Conference on Information and
Intelligent Systems, pp. 312-317, 2014.

[42] T. Orehovački, D. Kermek and A. Granić, “Examining the Quality in Use
of Web 2.0 Applications: A Three-Dimensional Framework”,
Communications in Computer and Information Science, vol. 373, pp. 149-
153, 2013.

[43] B. W. Boehm. “A Spiral Model of Software Development and
Enhancement”. Computer, vol. 21, no. 5, pp. 61-72, 1988.

