
Perceived Quality of Verificator in Teaching 

Programming 
 

T. Orehovački, D. Radošević and M. Konecki 

University of Zagreb, Faculty of Organization and Informatics, Varaždin, Croatia 

{tihomir.orehovacki, danijel.radosevic, mladen.konecki}@foi.hr 

 

 
Abstract – Verificator is an educational tool meant for 

learning syntax and semantics of the C++ programming 

language at the introductory programming courses. With an 

objective to explore quality of the Verificator from student’s 

perspective, a pilot study was carried out. Data were 

collected by means of an online post-use questionnaire. The 

analysis of collected data uncovered pros and cons of the 

Verificator perceived by novice programmers. Empirical 

findings are presented and discussed.  

I. INTRODUCTION 

Drawing on our teaching experiences at different 

programming courses, we have created an initial version 

of an educational tool meant for writing code in C++ 

programming language which was named as Verificator 

[1]. The idea behind the development of Verificator 

emerged from observations of teachers. Students often 

tend to adopt some bad programming habits in their 

attempt to pass the exam. For instance, some students 

have learned even big fragments of program code by 

heart, almost without any understanding. There were also 

cases when students have written large amounts of 

program code without any syntax or logical testing.  The 

set forth has resulted in a huge number of errors, 

discouraging students from learning programming. The 

use of Verificator prevents such bad practice and 

motivates students to adopt good programming habits.  

The evaluation of the quality is an integral part of the 

life cycle of every software product. According to 

ISO/IEC 25000 [4], quality is a “degree to which a 

software product satisfies stated and implied needs when 

used under specified conditions”. In the Software Product 

Quality Requirements and Evaluation (SQuaRE) series of 

the international standards [5][6] the quality evaluation 

framework consists of three models: the product quality 

model, the quality in use model, and the data quality 

model. Each of the aforementioned models offers a set of 

quality characteristics relevant to various groups of 

stakeholders.   
This paper deals with the assessment of the perceived 

quality of Verificator from students' perspective. The 
remainder of the paper is structured as follows. Next 
section provides a brief overview of theories and models 
that form the background to our research. Features of the 
Verificator are described in the third section. Findings of 
the pilot study are presented in the fourth section. 
Conclusions and future research directions are contained 
in the last section. 

II. LITERATURE REVIEW 

A. Theoretical background 

The constructs that were used and examined in our 

research are based on several models: Technology 

Acceptance Model (TAM), Information System Success 

Model (ISSM), Unified Theory of Acceptance and Use of 

Technology (UTAUT), Expectation Confirmation Theory 

(ECT) and Theory of Flow (TOF). 

TAM is a theoretical framework which provides 

insight into the determinants of the adoption and use of 

the information technology. From its latest version [7], we 

adopted four different constructs. Perceived ease of use is 

the degree of ease associated with the use of the system. 

Perceived usefulness represents the extent to which an 

individual believes that using the system will enhance his 

or hers performance in assignment performance. Self-

efficacy denotes the degree to which an individual 

believes that he or she has the ability to perform specific 

assignment. Relevance refers to individual's perception 

regarding the degree to which the target system is relevant 

for the task at hand.  

ISSM was developed as a framework and model for 

measuring the complex-dependant variable in IS research. 

For our study, we adapted one construct from its ten-year 

update [8]. System quality is the extent to which a person 

perceives the quality of the system along with the process 

of using the system. 

UTAUT represents a synthesis of eight technology 

acceptance studies. From its recent extension [9] we 

adapted one construct. Performance expectancy (in our 

study value-added) is the degree to which the use of the 

system will provide benefits to users.   

ECT [10] examines cognitive beliefs and affects 

influencing one's intention to continue using information 

systems. Two constructs were adopted from this model. 

Confirmation is the degree of fulfilled expectation when 

individual was using the system. Satisfaction refers to a 

pleasurable or positive emotional state resulting from the 

appraisal of one's job. 

TOF [14] is a model which examines mental state, 

involvement and enjoyment of a person in the process of 

some activity. One construct was adopted from this 

model. Flow denotes the extent to which an individual is 

fully immersed and enjoys in specific assignment. 

Apart from the aforementioned constructs, we added 

three additional constructs that are specific for our 



research. Helpfulness is the degree to which Verificator 

helps in better understanding of programming concepts. 

Good programming habits refer to the extent to which 

individual can utilize better his or hers programming skills 

and develop good programming habits when using 

Verificator. Feedback represents the degree to which 

system notifies users about the progress or status of the 

task at hand through appropriate messages.  

B. Related work 

There are many tools that were developed to help one's 

education process of computer programming. A brief 

overview of these tools is offered in [3]. Lane and 

VanLehn [18] found that tools developed for learning 

programming can positively influence on students’ 

perception and motivation.  

TAM is the most popular model for technology 

acceptance in the online learning domain [19]. There are a 

few studies that deal with constructs of TAM in the field 

of computer programming but they are not specific to a 

certain learning tool. Orehovački et al. [2] uncovered that 

perceived usefulness and perceived ease of use have 

influential role weather students will accept the learning 

tool and future behaviors towards its use. According to 

Ramalingam et al. [13], self-efficacy and mental models 

significantly affect the process of learning programming. 

Webster et al. [20] emphasize that flow plays a significant 

role in human-computer interactions. Results of the study 

conducted by Potosky [17] showed that there is a link 

between flow and post-training programming efficacy. 

Previous programming experience can also have 

significant role in programming education and acceptance 

of supporting learning tools [12][16]. Finally, findings of 

several studies indicate that computer anxiety correlates 

with the students prediction of their final grade and with 

perception of their own programming skills and habits 

[11][15].  

III. VERIFICATOR 

Verificator
1
 is an educational tool developed with the 

aim to improve the process of teaching programming at 

the university beginner's level thus helping students to 

acquire programming skills more easily [1]. The user 

interface of the Verificator is displayed in Figure 1.  

After starting with some basic functionalities like 

preventing copy/paste of program code and obligatory 

syntax checks within given intervals, over years, 

Verificator has been enriched with several novel features 

such as program testing mode, tutor, time control, 

program structure analysis, etc. The aforementioned 

functionalities will be explained in more detail in 

following sub-sections.   

A. Personalization of programs 

Students are asked to fill out the welcome form with 
some general information about themselves and the 
assignment (e.g. name, id, program name and description). 
These data are included into the program code in the form 
of comments together with a checksum by means of 

                                                           
1
 http://gpml.foi.hr/teaching_tools.html 

which it can be examined whether the program code was 
completely written in Verificator or not. 

 

Figure 1.  User interface of Verificator  

B. Time limitation for solving the assignment 

Students should solve the assignment within a 
predefined time interval. To avoid the problem with 
different system time at different computers, the time is 
controlled with the use of time servers on the Internet. 
After the time runs out, a student can still run the program, 
but he or she cannot modify it. 

C. Prevention of copying programs from colleagues 

Verificator prevents copying program code from 
external sources. In that respect, the overall code, apart 
from the given library, must be entered by the student. 
This feature is connected with obligatory intervals of 
syntax and logical program testing. Therefore, it is not 
possible to retype the program code. Instead, it has to be 
verified within the specified intervals. 

D. Adoption of good programming habits 

Findings of prior studies [1][3] indicate that students 
who employ standard programming environments to some 
extent tend to adopt bad programming habits such as 
learning programming code by heart, programming 
without syntax and logical checks, etc. Verificator 
requires from students to check the syntax of their 
programs after every 10 new lines of code which is 
graphically illustrated with traffic lights (red light 
indicates that is no longer possible to compile the 
program). Furthermore, program has to be checked 
logically within the given intervals (expressed in the 
number of program blocks) in a way that all program 
blocks have to be reached during the execution. 

E. Help for easier detection of syntax and logic errors 

Apart from the standard errors and warnings provided 
by compiler, Verificator offers further explanation of 
possible causes of these errors (e.g. unmatched curly 
brackets or parentheses, incorrect use of certain operators, 
etc.). In addition, Verificator also contains a tool for the 
analysis of the program structure as well as the debugging 
tool. 



IV. PILOT STUDY 

A. Procedure and Apparatus 

During the winter semester of the academic year 
2013/2014 the study participants employed Verificator to 
solve fifteen diverse lab-based programming assignments. 
Students also had the opportunity to use Verificator in 
order to prepare themselves for the lab-based exercises 
which took place once a week. At the end of the semester, 
students were asked to complete the post-use 
questionnaire consisted of 7 items related to their 
demographic characteristics as well as 50 items meant for 
evaluating twelve different facets of the perceived quality 
of Verificator in the context of teaching programming. 
The responses to the items referring to specific aspects of 
the perceived quality were modulated on a five-point 
Likert scale (1 – strongly agree, 5 – strongly disagree). 
Items marked with asterisk are reverse coded. 

B. Participants 

A total of 121 respondents ranging in age from 19 to 
28 years (M = 20.89, SD = 1.315) took part in the study. 
The sample was composed of 83.47% male and 16.53% 
female second-year undergraduate students enrolled in the 
Information Systems study programme. The majority of 
students (43.80%) perceived their programming skills as 
good. Similarly, most of the respondents (56.20%) had 
good knowledge of C++ programming language syntax. 
Considering the frequency of using the Verificator, 
83.47% of students employed it between once and twice a 
week while 63.64% of them used the aforementioned tool 
between one and three hours per week. Finally, the 
majority of participants (84.30%) had up to four years of 
programming experience.   

C. Findings 

According to the data presented in Figure 2, majority 
of pilot study subjects (61.49%) believe that the 
employment of the Verificator contributes to the 
development of good programming habits. For instance, 
63.64% of students reported that Verificator motivates 
them to be more disciplined while solving the problem-
based assignments (M = 2.40, SD = 1.158). In addition, 
59.50% of participants stated that Verificator encourages 
them to write their program solutions more clearly (M = 
2.62, SD = 1.349). 

Results of data analysis displayed in Figure 3 indicate 
that 54.88% of students perceive Verificator as a helpful 
tool in the context of teaching programming. While 
63.64% of respondents reported that Verificator is helping 
them in the interpretation of syntax errors (M = 2.46, SD = 
1.133), merely 44.63% of them believe that Verificator 
explains messages provided by the interpreter in a more 
intuitive manner (M = 2.74, SD = 1.061).    

 

 
Figure 2.  Perceived effect of using the Verificator on development of 

good programming habits 

 

 
Figure 3.  Perceived helpfulness of Verificator  

As can be observed from the responses to 
questionnaire items shown in Figure 4, 64.30% of study 
participants think that messages provided by the 
Verificator are of high quality. Namely, majority of them 
(73.55%, 62.81%, 62.81%, 62.81%, and 59.80%, 
respectively) agree that messages displayed by Verificator 
are useful (M = 2.17, SD = 0.898), understandable (M = 
2.42, SD = 0.955), accurate (M = 2.30, SD = 0.823), 
trustworthy (M = 2.28, SD = 0.839), and clear (M = 2.45, 
SD = 0.939). 



 
Figure 4.  Perceived quality of messages provided by Verificator  

The data presented in Figure 5 imply that 46.28% of 
study participants believe that Verificator has sufficient 
level of system quality. Namely, 69.42% of the 
respondents are pleased with the responsiveness of 
Verificator (M = 2.32, SD = 0.896). On the other hand, 
only 29.75% of them agree that Verificator is stable and 
reliable in its operation (M = 3.25. SD = 1.113). 

 

Figure 5.  Perceived system quality of Verificator 

The findings presented in Figure 6 indicate that 
Verificator made an impression on only one third 
(33.33%) of students. More specifically, 40.50% of 
participants reported that interaction with Verificator was 
a frustrating experience for them (M = 2.93, SD = 1.209). 
On contrary, 31.40% of study subjects were satisfied with 
using the Verificator (M = 3.13, SD = 1.072).  

 
Figure 6.  Satisfaction with using the Verificator 

  According to the results of data analysis displayed in 
Figure 7, only 41.05% of students agree that the 
interaction with the Verificator was as they expected. 
While 48.76% of participants reported that majority of 
their expectations on interaction with the Verificator were 
confirmed (M = 2.68, SD = 1.035), 34.71% of them stated 
that the use of the Verificator has not met their 
expectations (M = 3.03, SD = 1.016). 

 
Figure 7.  Confirmation of expectations related to the interaction with 

Verificator 

  As can be observed from the responses to 
questionnaire items shown in Figure 8, 30.74% of study 
participants believe that frequent employment of 
Verificator improves their programming skills. For 
instance, 45.45% of students think that there is a positive 
correlation between frequency of using the Verificator and 
number of points obtained during lab-based sessions (M = 
2.93, SD = 1.219). On contrary, 36.36% of participants 
reported that frequency of using the Verificator has 
nothing with their efficiency in learning programming 
concepts (M = 2.78, SD = 1.092). 



 
Figure 8.  Value-added of the Verificator 

Considering the data presented in Figure 9, Verificator 
is a relevant tool for teaching programming. Namely, 
46.28% of students think that Verificator is convenient for 
learning programming concepts (M = 2.85, SD = 1.188).  

 

Figure 9.  Perceived relevance of Verificator 

  Data displayed in Figure 10 imply that 44.30% of 
study participants perceived Verificator as useful tool for 
teaching programming. More specifically, 50.41% of 
students agree that employment of Verificator improves 
their effectiveness in understanding both syntax and 
semantics of the C++ programming language (M = 2.78, 
SD = 1.165). Moreover, 38.02% of respondents believe 
that they can learn programming concepts more efficiently 
when they use Verificator than when they employ 
teaching materials (e.g. textbooks, educational artefacts 
deployed on LMS, etc.) for the same purpose (M = 2.93, 
SD = 1.146).  

 

Figure 10.  Perceived usefulness of Verificator 

As can be observed from the data shown in Figure 11, 
majority of respondents (66.94%) believe that using the 
Verificator does not require a lot of effort. Namely, 
76.03% of students reported that is easy to learn to operate 
the Verificator (M = 2.03, SD = 0.921). Similarly, 60.33% 
of them stated that is easy to become skilful at using the 
Verificator (M = 2.33, SD = 1.028).  

 

Figure 11.  Perceived ease of use of Verificator 

As can be observed from the responses to 
questionnaire items shown in Figure 12, 42.81% of study 
participants think that Verificator successfully focuses and 
holds their attention while making the solution of the 
problem-based assignment. More specifically, 53.72% of 
students reported that while using the Verificator, they are 
completely focused on solving the assignment (M = 2.71, 
SD = 1.294). Furthermore, 30.58% of them stated that 
nothing can distract them while they are writing the 
program code in the Verificator (M = 3.16, SD = 1.162).  

 

 

 

 

 

 



 

Figure 12.  Flow of using the Verificator 

Data presented in Figure 13 indicate that majority of 
respondents perceived themselves as self-efficient in the 
context of using the Verificator. For instance, only 8.26% 
of students believe that they could use Verificator only 
when someone would instruct them what to do (M = 4.07, 
SD = 0.941). In addition, 47.93% of study participants 
think that they could use Verificator even if they had not 
employed similar tools before (M = 2.73, SD = 1.162). 

 

 

Figure 13.  Perceived self-efficacy in using the Verificator 

V. CONLUSION 

The objective of this paper was to explore diverse 
facets of the perceived quality in use of the educational 
tool Verificator. For that purpose a pilot study was carried 
out during which the post-use questionnaire was 
developed and administered among information systems 
students. An analysis of collected data revealed strengths 
and weaknesses of the Verificator. In that respect, the 
introduced questionnaire can be employed for measuring 
the quality of educational tools meant for teaching 
programming. Moreover, the proposed quality attributes 
can be used as a background for future research advances 
in the field. Given that the work presented in this paper is 
a part of an ongoing research, our future research efforts 
will be focused on modelling interrelations among 
determined quality attributes. 

 

 

REFERENCES 

[1] D. Radošević, T. Orehovački and A. Lovrenčić, “Verificator: 
Educational Tool for Learning Programming”, Informatics in 
Education, vol. 8, no. 2, pp. 261-280, October 2009. 

[2] T. Orehovački, D. Radošević and M. Konecki, “Acceptance of 
Verificator by Information Science Students”, Proceedings of the 
34th International Conference on Information Technology 
Interfaces, V. Lužar-Stiffler, I. Jarec and Z. Bekić, Eds. Cavtat: 
IEEE, 2012, pp. 223-230. 

[3] D. Radošević and T. Orehovački, “An Analysis of Novice 
Compilation Behavior using Verificator”, Proceedings of the 33rd 
International Conference on Information Technology Interfaces, 
V. Lužar-Stiffler, I. Jarec and Z. Bekić, Eds. Cavtat: IEEE, 2011, 
pp. 325-330. 

[4] ISO/IEC 25000, “Software Engineering -- Software product 
Quality Requirements and Evaluation (SQuaRE) -- Guide to 
SQuaRE”, 2005. 

[5] ISO/IEC 25010, “Systems and software engineering -- Systems 
and software Quality Requirements and Evaluation (SQuaRE) -- 
System and software quality models”, 2011. 

[6] ISO/IEC 25012, “Software engineering -- Software product 
Quality Requirements and Evaluation (SQuaRE) -- Data quality 
model”, 2008. 

[7] V. Venkatesh and H. Bala, “Technology Acceptance Model 3 and 
a Research Agenda on Interventions”, Decision Sciences, vol. 39, 
no. 2, pp. 273-315, May 2008. 

[8] W. H. DeLone and E. R. McLean, "The DeLone and McLean 
model of information systems success: a ten-year update", Journal 
of management information systems, vol. 19, no. 4, pp. 9-30, 
2003. 

[9] V. Venkatesh, J.Y.L. Thong, X. Xu, “Consumer acceptance and 
use of information technology: extending the unified theory of 
acceptance and use of technology”, MIS Quarterly, vol. 36, no. 1, 
pp. 157-178, March 2012. 

[10] A Bhattacherjee, "Understanding information systems 
continuance: an expectation-confirmation model", MIS Q. vol. 25, 
no. 3, pp. 351-370, 2001. 

[11] E. C.  Sheeson, "Computer anxiety and perception of task 
complexity in learning programming-related skills", Computers in 
Human Behavior, Vol. 21, no. 5, pp. 713-728, 2005. 

[12] A. A. Anderson, "Predictors of computer anxiety and performance 
in information systems", Computers in Human Behavior, vol. 12, 
no. 1, pp. 61-77, 1996. 

[13] V. Ramalingam, D. LaBelle and S. Wiedenbeck, "Self-efficacy 
and mental models in learning to program", SIGCSE Bull, vol. 36, 
no. 3, pp. 171-175, 2004. 

[14] M. Csikszentmihalyi, M., “Beyond Boredom and Anxiety”, San 
Francisco: Jossey-Bass, 1975. 

[15] J. J. Beckers, R. M.J.P. Rikers, H. G. Schmidt, "The influence of 
computer anxiety on experienced computer users while 
performing complex computer tasks", Computers in Human 
Behavior, vol. 22, no. 3, pp. 456-466, 2006. 

[16] B. C. Wilson and S. Shrock, "Contributing to success in an 
introductory computer science course: a study of twelve factors." 
SIGCSE Bull, vol. 33, no. 1, pp. 184-188, 2001. 

[17] D. Potosky, "A field study of computer efficacy beliefs as an 
outcome of training: the role of computer playfulness, computer 
knowledge, and performance during training", Computers in 
Human Behavior, vol. 18, no. 3, pp. 241-255, 2002. 

[18] H. C. Lane and K. VanLehn, "Teaching the tacit knowledge of 
programming to novices with natural language tutoring", 
Computer Science Education, vol. 15, no. 3, pp. 183-201, 2005. 

[19] S. H. Chang, C. H. Chou and J. M. Yang, "The Literature Review 
of Technology Acceptance Model: A Study of the Bibliometric 
Distributions", PACIS Proceedings, 2010. 

[20] J. Webster, L. K. Trevino, L. Ryan, "The dimensionality and 
correlates of flow in human-computer interactions", Computers in 
Human Behavior, vol. 9, no. 4, pp. 411-426, 1993.

 


